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19. Abstract

In chapter 3 and 4 we deaL with signal processing techniques for the reduction of
clutter noise created by random media composed of a high concentration of Point scatterers.
The problem is to enhance a target embedded in a random medium when the clutter noise
variance and the target echo location and amrlitude are unknown. In chapter 3 we
analyze theoretically a technique that was first proposed by Newhouse et al (3) the so
called Minimization algorithm. In this technique we split the received signal spectrum
into n frequency windows. The minimum of the squared signals at each range delay is
then chosen. The calculated SNRE (signal-to-noise-ratio enhancement ) of this tech-
nique agrees well with experiments performed by N.M.Bilgutay (4). We calculate also

the-Receiver Operating Characteristics (ROC) and find out that the improved SNRE of
I Minimization is negated by Loss in detection properties.

In chapter 4 we describe a method for clutter reduction that also uses the split
spectrum principle. In this technique we construct the optimum receiver for each
range delay from the n outputs of the frequency windows. We calculate the ROC for
this technique and find it to be superior to minimization for most cases. We show
experimentally the effectiveness of this algorithm in clutter reduction.

In chapter 5 we summarize the results of this research work and show the
flexibility and versatility of the techniques by introducing improvements and
applications to the described methods.
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ABSTRACT

Two topics dealing with the reflection of ultrasound bursts from

random media are discussed in this work.

In chapter 2 we develop a general formulation of the echo received

from a random scatterer ensemble illuminated by a short electromagnetic

or sonic signal. We show theoretically that a gradient in either scat-

terer concentration or in the field function of the transmitter/receiverB

will return an echo which is partially spatially coherent (i.e. specular).

Furthermore we show that from the degree of coherency, i.e. from the ratio

li of the random part to the nonrandom part of the reflected signal, the

scatterer concentration and scattering cross-section can be calculated.

We also show experimentally that scattering concentration gradient creates

a coherent reflection from whose degree of coherency the scattering con-

centration can be estimated.

In chapter 3 and 4 we deal with signal processing techniques for the

reduction of clutter noise created by random media composed of a high

concentration of point scatterers. The problem is to enhance a target

embedded in a random medium when the clutter noise variance and the

target echo location and amplitude are unknown. In chapter 3 we analyze

theoretically a technique that was first proposed by Newhouse et al [3]

the so called Minimization algorithm. In this technique we split the

received signal spectrum into n frequency windows. The minimum of the

squared signals at each range delay is then chosen. The calculated SNRE

(signal-to-noise-ratio enhancement) of this technique agrees well with
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experiments performed by N.M. Bilgulay [4]. We calculate also the

Receiver Operating Characteristics (ROC) and find out that the improved

SNRE of Minimization is negated by loss in detection properties.

In chapter 4 we describe a method for clutter reduction that also

uses the split spectrum principle. In this technique we construct the

optimum receiver for each range delay from the n outputs of the frequency

windows. We calculate the ROC for this technique and find it to be

superior to minimization for most cases. We show experimentally the

effectiveness of this algorithm in clutter reduction.

In chapter 5 we summarize the results of this research work and show

* the flexibility and versatility of the techniques by introducing improve-

ments and applications to the described methods.

d



CHAPTER 1

INTRODUCTION

CLUTTER PROBLEMS IN IMAGING SYSTEMS

One of the most important limitations of Ultrasonic Imaging Systems

j using pulse echo techniques is imposed by clutter noise at the system

output. This clutter noise is usually caused by relatively small, highly

dense, randomly positioned scatterers. In one type of clutter problem

the target to be detected can be modelled as a strong reflector. Even

though the target echo is significantly larger than each of the individual

small random scatterers around it, the target is sometimes difficult to

detect due to the high density of the interfering scatterers. Such prob-

lems exist in almost every field associated with imaging. In Ultrasound

Nondestructive Testing the large grain boundary echoes makes it dif -ilt

to detect relatively large flaws [1,2,3,4]. In medical imaging the fine

tissue microstructure echoes sometimes makes it hard to outline the organ

boundary [5,6], and in Radar Systems, rain drops, chaff or sea clutter

[(7,8,9,10,11,12,13,14] are often strong enough to mask the target. Time

averaging or correlation techniques, which reduce random thermal noise

significantly, are not suitable for reducing coherent noise resulting

* from echoes due to the stationary interfering scatterers.

In another type of clutter problem the targets are composed of a

high density of point scatterers. The reflected signal is accompanied

* by a speckle pattern (spatial brightness fluctuations) which is due to
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the random interference pattern of the reflectors composing the target.

This type of problem appear often in coherent optical imaging [15] when

the object (that can be modelled by a high density of small random re-

flectors) is imaged by a highly coherent illumination. In Ultrasound

Medical Imaging the echo from the tissue microstructure which can be

modelled in a similar way, is an important part of the image and helps to

diferentiate and characterize the different organs (16,17,18,5,6,19-21,

22-25].

In the text we refer to the first problem in which we wish to sup-

press the clutter echo and enhance a large target echo as a problem in

"clutter reduction", and we refer to the second problem in which we wish

to reduce the speckle pattern of targets composed of a large sum of point

reflectors as a problem in "speckle reduction".

Some conventional techniques to reduce clutter and speckle are

described below.

GENERAL LITERATURE REVIEW

Scattering from Random Media

Ultrasonic signal processing techniques have developed dramatically

in the last decade mainly due to the introduction of low cost powerful

computers. But before reviewing the recent literature on modern signal

processing techniques in Ultrasound we should pay some attention to the

basic understanding of the scattering from random media as the modelling

of random media is the basis on which most of the signal processing

techniques base their approach.

The theory covering the propagation of waves in random media is

vast. In [26,27,28] one can find the description of the basic acoustical

models for wave propagation and in [29,30] a discussion on some of the
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theories when applied to biological tissues is given.

The scattering from bodies with simple geometry can be calculated by

methods introduced in (26,27,31]. In the limit, for reflectors which are

much smaller than the wave length the solutions are explicit. These

solutions can be extended to complex elements by assuming a combination

of several individual centers.

The scattering is described through the definition of scattering

cross section. The total cross section is defined as [26,32]

a=.P  1.1I

where I is the incident wave and P is the scattered signal. Of more

practical importance is the definition of differential scattering cross

section which is related to a by

a - f a'dA 1.2

4w

where A is the solid angle. In general a'-a'(A). For the important

case of a small sphere (smaller than the wave length [261)

K -K 3P-3p
a' 1.[ w14 a6 [-. + s cos 9]2 if X >> a

9 X K 2ps+p

where

X= wavelength

a - radius of the scatterer

8 angle between the incident wave and the direction of scattering.

Ps = density of the sphere.

p - density of the medium.

Ks - compressability of the sphere.

K - compressability of the medium.
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For practical cases isotropic scattering can be assumed only if

either ps-p or if the range of angles in eq. 3 is small enough and a is

such that a-a'Ao.

The structure of biological tissue is very complex and it exhibits

nonhomogeneities in almost any scale. So the assumption of discrete, weak

scattering which is often used is clearly a simplified assumption as the

scattering bodies range from much smaller than the wave length up to much

larger than the range cell [32]. Theoretical results based on these

assumptions should be constantly challenged and verified to be considered

reliable.

The statistical properties of the backscattered clutter echo play a

major role in the optimal signal processing to be chosen for clutter or

speckle reduction. It can be shown that if the scatterers are uniformly

distributed and the number of scatterers in the range cell is high enough,

the backscattered echo amplitude assuming the plane or spherical wave

approximation, can be considered Gaussian with zero mean [331. In [34]

the average power backscattered from random media with a density profile

is given for continuous wave propagation. In this publication Siegert

and Goldstein show that a medium which exhibits a density profile gives

rise to a coherent term which translates to an echo with non-zero mean.

In [35,36] Glotov calculates the average backscattered power from a slab

filled with nonuniform size scatterers illuminated by a burst. The echo

again contains a coherent term which resembles specular reflection. If

the slab is much smaller than the wave length the reflection is mostly

coherent and the random component becomes insignificant. In chapter 2

we will develop a general formulation for the backscattered echo from

random media on which our signal processing approaches will be based.
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Signal Processing Techniques for Clutter Reduction

One of the most popular techniques used in radar systems to overcome

clutter noise is the use of frequency diversity (agility). In this tech-

nique the Radar system possesses a center frequency which is varied between

pulses. This is similar to increasing the effective bandwidth of the

transmitted signal and thus, the clutter noise power which is inversely

proportional to the system bandwidth [7,8,14], is reduced. The other

improvements obtained with the use of frequency agile Radars namely,

antijamming capabilities, range improvement and tracking are not of any

importance in biomedical Ultrasound and non-destructive testing. However,

techniques used for processing the frequency diverse signals will be the

measure against which the new techniques (to be introduced in chapters 3

and 4) will be compared.

A very good review of the literature on frequency agility is given

in [4]. To summarize, we only mention that the two most popular proces-

sing schemes are composed of either direct summation of the successive

echoes before demodulation (which is equivalent to operation with a wide

bandwidth or transmitting and receiving with all the frequency windows

simultaneously) or summing the different frequency windows after demodula-

tion (envelope detection). This is done when the target echo phase is

lost between pulses (due to fast fluctuation of the target position

between pulses).

After processing the frequency diverse signals a threshold is set to

enable a decision whether a target exists in a prespecified range cell.

In the technique which is most often used and called "CELL AVERAGING" we

evaluate the clutter noise power [9,37,38,10,11,12,13] from some "test

cells". Then assuming that the same clutter noise power exists in the

i iNg mmifm m



range cell of interest a CFAR (constant false alarm rate) detector can

be designed. This technique provides a noise riding threshold and only

cells assumed to contain targets are presented. The detector design

depends on the statistics of the clutter echo. Usually the assumption

of Gaussian distribution for the clutter noise amplitude is used which

is true only if the number of scattering centers in the range cell is

high enough. A good review of clutter properties (in Radar applications)

I is given in [39].

In 1981 "Split Spectrum Processing" was introduced by Newhouse et al

[3,4] for the improvement of flaw visibility in the presence of grain

a noise. In this technique the received echo is split into several fre-

quency windows (possibly overlapping) and the minimum of the squared

windowed signals at each range delay is then chosen. In [3,4] the tech-

Anique is compared experimentally with other conventional techniques and

proved to have an improved flaw to grain noise enhancement. As the

'Optimal Processing' technique introduced in Chapter 4 in this report is

partially based on elements in this algorithm and will be compared with

it, we analyze the minimization algorithm theoretically in chapter 3.

Signal Processing Techniques for Speckle Reduction in Ultrasonic Imaging

Because the Laser speckle phenomenon is so similar to Ultrasound

speckle the Laser literature was the main source for techniques for

speckle reduction in Ultrasound. An excellent review of the optical

speckle phenomenon is given in [15]. It was only towards the middle of

the last decade that techniques for Ultrasound speckle reduction were

introduced and a substantial number of signal processing techniques

appeared in the open literature especially in the last few years [17,18,5,

n
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20,22-24]. One of the earliest papers (40] uses spatial compound scanning

to reduce Ultrasound speckle. In this technique the region of interest

is illuminated from different directions and the different gray levels

are then compounded to create an image. This technique can be successful

only when Lhe interrogated medium can be considered isotropic and non

refractive and the region of interest is accessible from different direc-

tions. Organs such as the breast are ideal for such compound imaging.

a

In 1978 Burckhardt argued for the first time that Ultrasound speckle

should be treated in a similar way to optical speckle. He modelled the

tissue as a collection of a high density of point scatterers and he

a

evaluated the signal to noise ratio as the mean of the signal envelope

to the envelope standard deviation. From this definition the signal to

noise ratio is 1.91. He later introduces a new algorithm "Compound scan

with maximum amplitude writing". In this technique the maximum of the

different echoes associated with a certain point in space is selected

instead of the average. He claims that the difference between averaging

which is the optimum processing for this model and "Maximization" is

negligible.

In 1919 Abott and Thurstone [19] analyzed the Ultrasound speckle

phenomenon based again on the concept of Laser speckle. The paper out-

lines the ways in which speckle can be reduced i.e variations in time,

space or frequency parameters. The first of these, time, involves a

phase diffuser which is equivalent to generating a random pattern in

phase from burst to burst or image to image. This technique was found

to be useless in Ultrasound as it resulted in image degradation due to

deterioration in focusing and distortion of the transmitted wave front.

The second of these, spatial variation, involves either illuminating the

phs ifsrwihi qiaet ognrtn admpteni
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object from different directions or simply moving the transducer in

drelation to the object sufficiently to change the phase distribution

across the transducer aperture. The third of these is equivalent to

frequency agility a concept that was discussed earlier in connection

with target detection and will be discussed later in this section in

connection with speckle reduction.

In 1983 Wagner et al published a pair of papers on speckle. In the

first [16] they calculate the second order statistics of Ultrasound

speckle in B images as a function of transducer dimensions and range.

Their results seem to fit reasonably with experiment. In the second paper

a f[17] they use the results obtained in the first paper and some known

results from statistical decision theory to obtain decision rules for

lesion detection. The results turn out to be spatial averaging. Several

adjacent cells are summed to create a new cell (or a decision rule).

Obviously resolution is sacrificed in this procedure. In 1983 [5] Robinson

and Knight checked experimentally the performance of some spatial pulse

echo compound scan techniques. The performance of peak detected, minimum

detected and averaged reconstruction of point targets is compared. They

conclude that averaging is capable of increased range resolution compared

to peak detection and that the speckle pattern is smoother. The minimum

detected signal has an improved resolution of point targets and "shows

promise in location of shadowing structures".

Frequency Compounding

A discussion on frequency compounding in connection with Ultrasonic

medical imaging is given in [22]. It is found that the degree of speckle

contrast reduction is inversely proportional to the bandwidth of the

transmitted acoustic burst. Also, a considerable increase in signal to

.. ... .
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noise ratio of the speckle pattern can be achieved. In another paper

M [23] the received spectrum of the backscattered signal is split into two

overlapping frequency windows and the respective channels are then summed

after envelope detection. This technique is reported to increase the

signal to noise ratio of the speckle pattern with improved resolution.

We will show later in the this report that the optimum receiver is some-

what different from the one implemented in [23] and should provide better

results.

MOTIVATION FOR RESEARCH

The fact that current techniques are not effective enough in the

reduction of clutter and speckle noise in Ultrasonic imaging systems is

the driving force for this project. Techniques such as spatial averaging

(or spatial compounding) are difficult to implement due to the relatively

high refraction of the biological tissue and man-made materials, the high

accuracy required from the scanning system, and the fact that many of the

regions of interest are not accessible from different directions. Fre-

quency diversity (or frequency averaging) is successful when it is easier

to transmit narrow frequency windows one at a time instead of the entire

available spectrum. In Ultrasound however it is possible to transmit

extremely wide bandwidths.

Extending the frequency range by using several elements with differ-

ent center frequency raises more problems than it solves. First the
A

propagating medium is highly frequency dependent (i.e frequency attenua-

tion dependence) and secondly the scattering from the microstructuze

rapidly increases with frequency. The beam pattern of the transducer is

also sensitive to frequency. Thus simple frequency compounding is not

useful.



In this work we concentrate our effort on a different type of 3Lga:i

j processing. We concentrate on clutter and speckle reductLon through post

reception A scan processing only. By working on individual A scans we

eliminate the many practical problems associated with compound scanning

and make the problem solely a signal processing one. The techniques to

be introduced here require that the signals should be processed at the RF

level. Techniques usually described in the literature do not deal with

id processing at the RF level, but as we see later the hardship of working at

the RF level has its rewards.

SYNOPSIS OF THE REMAINING CHAPTERS

In this section we summarize the remaining chapters in this report.

In chapter 2 we develop a general formulation for the backscattered echo

from a random medium that can be modelled as an ensemble of randomly

distributed point scatterers. To simplify the mathematics we assume

isotropic scattering. The average backscattered power from the random

ensemble is calculated as a function of transducer parameters and the

spatial density profile of the scatterers. It is shown that the echo

from a random ensemble exhibiting a sharp volume density gradient may

resemble specular reflection. This explains for example the "specular"

reflection from organ boundaries in medical Ultrasound B scans. It is

also shown that the ratio between the power of the "specular" echo, i.e.

the spatially coherent portion of the echo amplitude to the echo variance

should enable us evaluate the scattering density if there is either a

density gradient or a field gradient. The results for the former case

are verified qualitatively by experiment.

After studying in chapter 2 the general behavior of the backscattered

echo from an ensemble of point scatterers we investigate in chapter 3
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theoretically an algorithm for clutter reduction that was first suggested

A In [3,4]. The technique is called the "Minimization Algorithm" and in

fact provided the impetus for this research project. We calculate the

improvement in signal to noise ratio of this algorithm and compare it

with experimental results obtained in [3,4]. The theoretical results

seem to fit well with experiment. Finally we calculate the Receiver

Operating Characteristic of this algorithm.

;" In chapter 4 we pose the problem of clutter reduction under the

assumption that the local properties of the clutter echo are unknown,

namely the local variance. We describe a technique to estimate the local

n• properties of the signal without a priori knowledge of whether a target

exists in the region of interest. We use the results to develop so-called

optimum detection algorithms for both additive and multiplicative noise

1 based on some known results in statistical decision theory. For the

Optimum Detector algorithm for additive noise, we calculate the prob-

ability of detection as a function of signal to noise ratio (for the

clutter reduction problem). Some experimental results for this type of

processing for the enhancement oi flaw to grain echoes in metal are also

given. Resolution performance and range bias of the suggested technique

* are evaluated experimentally. We also compare the performance of the

"Minimization Algorithm" with the new technique on the basis of ROC

(Receiver Operating Characteristics), resolution, bias, and amplitude

S dynamic range of the processed data.

Finally In chapter 5 we present conclusions, remarks and some sugges-

tions for future work.
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CHAPTER 2

SCATTERING FROM RANDOM MEDIA

INTRODUCTIONI
In this chapter we investigate the properties of the backscattered

echo from random media. The results obtained here suggest new techniques

for scatterer density estimation and also form the basis for the clutter

reduction algorithms to be discussed in chapter 3 and 4.

The random media throughout this work are assumed to be composed of

a high density (concentration) of point scatterers that can have random

size (strength) and/or random position. For simplicity we assume that the

average distance between the scatterers is much larger than their radius

thus allowing the assumption that their volume density is Poisson distri-

buted (if their position is random).

It is well known that under the assumption of plane wave approxima-

tion and constant scattering density the backscattered echo from random

media can be considered Gaussian with zero mean provided the scatterers

concentration is high enough (central limit theorem). However, if the

average scattering concentration (or size) is not uniform as a function

of range delay, or the sonic field exhibits a gradient the problem becomes

more complex. Siegert and Goldstein (34) calculated the backscattered

echo from a continuously illuminated time varying random medium, composed

of identical size scatterers under the assumption of plane wave illumina-

tion. They found out that the backscattered echo should have a non zero
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mean (coherent echo) which is proportional to the gradient of the scatter-

U ing density. Some years later Glotov (36) analyzed the case of a short

transmitted signal illuminating a slab filled with discrete inhomogenei-

ties for both the plane wave and spherical wave approximation and again

showed that the returned echo should have a non zero mean.

In this chapter we investigate the properties of the backscattered

echo from random media for pulsed transmission by extending the existing

theories to take into account field fluctuations and the scattering

density profile. We start by analyzing the backscattered echo from a

regular lattice with equal spacing and random scattering cross-section,

later we proceed to evaluate the returned echo from random media with

uniform scattering density and finally we analyze the backscattered echo

from random medium with non uniform scattering density and arbitrary

field structure.

THE REGULAR LATTICE

Let the echo detected by a sonic receiver at time t after transmis-

sion of a pulse, due to a single point scatterer at t be written as

a Es(t) - piG(Ci,t) (2.1)

where G(t,t) is defined as 'he impulse response of a system composed of a

transmitter/receiver illuminating a scatterer located at ti and p is a

proportionality constant that depends on the scatterer scattering cross

section. Suppose that we illuminate a regular lattice for which the scat-

tering cross-section of the particles is a random variable (see Figure 1).

The backscattered echo from the lattice can be written (assuming the Born

approximation)
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Figure 2.1 The regular lattice. (The scattecers within the lattice
were niot drawn to retain clarity).
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n

E(t) - p piG(fi,t) (2.2)
i-la

where n is the number of the scatterers in the range cell, defined as

that region in space from which echoes are received at time after

transmission.

The average power of the backscattered echo becomes

n n
P(t) - I Pi~pG(,t)G(Citt) (2.3)i=l M~

Where - means ensemble average (and not time average). In order to

measure this average one would move the transducer with respect to the

lattice and average the received power for a given range delay t. As-

suming pi to be statistically independent of pj eq. (3) becomes

n
p7 - G(i,t)i 2 + 2 n nGit)G(tjjr)

i-i i-l J- (2.4)
i j

Rewriting eq. (4) we obtain

n
(t)- IG(ji,t)12 + 2 [G(ft1 ,t)[G(t1,t) +i-I

(2.5)
+ G(*2 ,t) + ...+ G(fn-t) - G(*,,t)] + + I

Replacing the summations by integrals we obtain

PET P2 f IG(t,t)[ 2dv + 2 If G(tt)dv[2
Av v Av2  v

-2 (2.6)
- f IG(t,t)I2dv
AV- V

0 where Av is the volume of a unit cell of the lattice. but

1 v . n = N (2.7)
Iv v v

a
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and* eq. (6) becomes

P(t) N-  f IG( ,t)1 2 dv + N2 52 If G(t,t)12
v v

- N-2 f IG(t,t)1 2dv (2.8)i v

as we see in the next section the second term in eq. (8) very often

vanishes. In this case P- becomes

P(t) - N2f IG(i,t)1 2dv (2.9)

and the backscattered power is directly proportional to the variance of

the scattering cross-section of the lattice particles, a . It is obvious

that if the scatterers are uniform in size no backscattered power is

expected.

RANDOM MEDIUM WITH UNIFORM SCATTERING CONCENTRATION

When a random ensemble is illuminated by a transducer the received

echo at time t after transmission can be written**

n
E(tln)- piG(f*it) (2.10)

i-I

where n is the number of the scatterers in the range cell. We assume that

the range cell has a volume V, and that it contains n randomly positioned

scatterers at locations rl,r2,r3,...,rn of strengths P102'',Pn" The

instantaneous power at time t is

v*For non cubic unit cell vil]. be directly proportional to n and not

equal to n as is assumed ere for a cubic unit cell.

**E(tln) should be read: E at range delay t given that there are exactly

n scatterers in the range cell.
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n n
ii P(tjn) - 1 Pj Pj G(i~,t) G(j t) (2.11)

This can be separated into two parts

n n n
P(tln) _ I IG(ei,t)12p 2 + I I G(fi't)G(fj't)PiOj

i-1 i il JGl (2.12)

i *j

The average power at time t after transmission, for differing locations

of the a scatterers in the range cell of volume V can be written

P(tln) - n pjIG(i,t)I2 + n(n-1) pi pj G(Lit) G(fjpt) (2.13)

Note that P(tln) is the average over all possible configurations of the

scatterer location ti in the range cell. Assuming that ti is uncorrelated

with it for i*j, we can rewrite eq. (2.13) as

P(tjn) - n pZ f IG(f,t)I 2 p(it)dv + n(n-1) 2 1 f G(t,t)p(t)dv12

V V (2.14)

where p(t) is the probability of finding one individual scatterer in the

volume element at it, and where the integrals are taken over the volume V

of the range cell. We may write

1
p~t) - - (2.15)

V

a Using these two relations we can write the ensemble averaged power P(tln)

P(tln) - n p2 f IG(t,t)I 2 dv + n(n-1)-2 If G(f,t)dvl 2  (2.16)
V V V2  V

To find the average power P(t) we have to evaluate
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P(t) - P(tjn) p(n) (2.17)
n-0U

from eq. (16) and (17)

P(t) - iZ f IG(I, t)12dv I np(n) +
V V n-l

+ ;2 If G(t,t)dvi2 7 n(n-l)p(n) (2.18)
V2  V n-l

* where n is Poisson distributed with n as its average. Replacing

) np(n) - i (2.19)
n-0

* and (as is known for the Poisson distribution),

n(n-1) p(n) - if2  (2.20)

n-O

we obtain

Np(t) - N I G( t,t)1 2dv + N2 -02 if G(t,t)dvI2  (2.21)
V V

where

N -

V

Note again that P(t) is ensemble average and not time average and that to

*obtain this average one would have to move the transducer with respect to

the medium (if the medium is stationary) and average the received power

for a given t. We see that the first term on the right hand side of eq.

* (21) is proportional to N7 i.e. to the average of the sum of the in-

dividual backscattered powers. We will therefore refer to it as the

incoherent power Pinc The second term is proportional to (- 2 , i.e. to

B the square of the sum of the backscattered amplitudes. We will therefore

describe it as the coherent backscattered power, Pcoh"

a m mM m * i .mmm itn m m m
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We now show that Pcoh equals the magnitude squared of the averaged

d echo, and that Pinc equals the variance of this echo.

From eq. (10), (15) and (19)

E(t) - T E(tT'n) p(n) - N- f G(tt)dv (2.22)

n 0 V

So that

Pcoh ' 1112 - N2 .2 If G(t,t)dvl2  (2.23)
V

The fact that Pinc is the variance of E(t) follows immediately, since

2a .i2 (2.24)

Thus from eqs. (21) and (24),

2a incG(t) 2 dv (2.25)

V

From eq. (21) one can see that the coherent term will be appreciable if

either N or f G(t,t)dv are sufficiently large. Let us examine the inte-
V

gral f G(t,t)dv for simple beam geometries. For example consider a plane
v

wave travelling along the z axis for which the field function can be

written

G(f,t) - I(t - 2Z)dz (2.26)

c

The coherent term of eq. (22) becomes

ET) - Np f I(t - 1zJdz (2.27)
c

Changing variables t' - t-2z/c eq. (22) becomes

Et7 - jN- f I(t')dt' (2.28)
2
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The integral and with it the coherent term reduces to zero since the

signal cannot contain a dc component. Likewise for a point transmitter/

receiver

E(t) - N5 f (I(t-2r/c)/r 2)4irr 2dr (2.29)

0

which again reduces to zero. Thus we see that both for the case of plane

wave approximation as well as for the case of waves emitted from a point

transmitter/receiver the coherent term vanishes.

However in a work which is currently performed by Goyao Yu from

Drexel University it is shown that for almost any other geometry of trans-

imitter/receiver the integral f G(t,t)dv does not vanish. For example,
v

Mr. Yu calculated numerically this integral for a point transmitter and

a ring shaped receiver and showed that the coherent integral is different

from zero in the near field. However in the far field the coherent inte-

gral practically vanishes. It is clear that the integral If G(t,t)dv12 is
v

usually much smaller than f IG(t,t)12dv. However the integral IfG(e,t)dvI2

v v
is multiplied by N2  while the integral f JG(1,t)j 2dv is multiplied

v
only by N (in eq. 2.21) which should make the ratio IE12/02E measurable.

These results obtained by Mr. Yu give rise to the hope that scatterer

concentration and scattering cross section estimation would be possible

using coherent reflection caused by field gradients.

RANDOM MEDIUM WITH NONUNIFORM SCATTERING DENSITY

If the scatterers exhibit a certain scattering concentration profile

N(f) the algebra introduced earlier becomes somewhat more involved. Rede-

fining p(t) to be N(t)! the average power at a certain range delay t can

be shown to be,

B mmm mm mm inmm lmmmm mmmu N i ma m
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p pt) - 7 f N(:t)IG(,t)I 2 dv + .2 If N(f) G(r,t)dvl 2  (2.30)

V V

with

- f N(t)G(2',t)dv (2.31)
V

It can be seen by inspection that the integral of eq. (31) will be non-

zero provided N(it) has a gradient in the same direction as that of the

function G(ft), i.e. in the direction of the sound beam. For the inte-

gral to be large the gradient of N(t) should be sharp compared to the

sound wavelength. The value of the integral for a step function in density

N(f) is derived below. Eq. (31) shows that a gradient in scattering

* density in the direction of propagation of the sound beam will return a

spatially coherent echo. The same holds true for the echo from the bound-

ary between two regions with different scattering densities. For simplic-

ity we assume the imaginary boundary to be planar. Replacing f by z we

can write,

N~z)- N z < o Mcto
N(z)-N 1  z<z - (2.32)

- N2  z ;0z o

For a plane wave G(z,t) - b(t-2z/c)cos[u<t-2z/c) + 8]; thus from eq. (31)

athe returned echo from the boundary becomes

E(to) = c N1 p1 f b(t)cos[wt+e]dt + 2S N2 2  b(t)cos[wt+e]dt
o P 2 P2

(2.33)

j and P2 are the average reflection coefficients of the scatterers in

region 1 and 2 respectively. Note that the volume integral in eq. (30)

becomes a time integral by change of variables. If the range cell is

situated such that the boundary is at its center the variance of E(to) can

be b lown o be,



a22

02 _ 1[of + ai] B c [NjP + N2 P] f Ib(t)I 2dt
4o (2.34)

~2
where oand 2 are the variances of the returned echo from region 1 and

region 2 respectively. For N2-O eqs. (33) and (34) become

E(to) - N, p1  f b(t)cos[wt+O]dt (2.33a)

20

a2 = 12 = Npf- f Ib(t)1 2dt (2.34a)
24

Hence the ratio

-_22
E----2 -2 fob(t)cos(wt+O)dtE (t o ) N, P 0

a2  4 0 (2.35)
1 f Ib(t)1 2dt

0

Measurement of the quantities on the left hand side of this equation,

should allow us to estimate the quantity N32 since the integrals on the
p7

right hand side can be computed. For uniform scatterers, 02/p-7 is unity,

allowing the density N and the scattering cross-section to be estimated

independently.

SNELL'S LAW FOR DENSITY GRADIENTS

a It is easy to show that the scattered sound from density gradients in

a random scatterer ensemble obeys Snell's law. Consider two plane wave

transducers used for transmission and reception respectively, oriented

at + 0 and - 0 degrees with repect to the z axis. Then the * and

components of V G(t,t) are zero where the function G(it,t) is as defined

in eq. (1) but for separate transmitter and receiver.

Although eq. (31) above was derivea for the case of a single trans-

ducer used for both transmission and reception, it is equally valid for



23

the transducer pair descilbed in the previous paragraph. For plane wave

A transmission and reception it can be shown that the integral in eq. (31)

is non zero provided that the gradients of N(t) and G(t,t) are parallel.

Thus a density gradient in a random scatterer ensemble will scatter a

coherent incident beam in the direction given by Snell's law, i.e. in the

same direction in which the beam would be reflected by a mirror parallel

to the planar constant density. This result is not unexpected and is

Iencountered often (without much excitement) in almost every field of

ultrasonic measurement.

* EXPERIMENTAL RESULTS

According to eq. (33) we should be able to observe a coherent echo

from the boundary between two different regions of differing scattering

d density.

One of the easiest ways to obtain a sharp boundary for scatterers

immersed in water, is to use sponges. A sponge can be cut to produce a

sharp boundary and when immersed in water the complex structure of the

sponge fibers can be considered as randomly distributed scatterers.

Furthermore, one can clamp together two sponges with different scattering

* properties and thus compose a sharp boundary between two different media,

or one can use only one sponge, simulating two media with N-O in region

1 and N2 in region 2. Figures 2(A)-2(D) show pictures of sponges used in

* such experiments. One can see that sponge A has the finest honeycomb

structure. Sponge B has a larger honeycomb structure, sponge C is even

more dilute and sponge D is the most dilute in comparison to sponges A,B

* and C. In Figure 3 we see sponges B and C side by side. One can see

that the boundary is sharp in comparison to a wavelength (frequency of

aI
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A B

AnA

a

Figure 2.2. A photograph of the surfaces of sponges A,B,C and D. The
* fine honeycomb structure is visible. (The width of each picture cor-

responds to 6.5 mm.)

a

Ima~ m mmll n~m nnJmnmu ~ulm
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j C B

or I

Figure 2.3. Sponges B and C side by side. It is seen that the honeycomb
structure of sponge B is finer than that of sponge C.

I.E-m. wm
I--. ASW I -- Ilmmmllmmmllh,%R, m. Im

Figure 2.4. Four different echoes from sponge B. Note that the coherent
echo component from the sponge boundary and the incoherent component from
within the sponge.
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2.25 MHz). One can also see again that the honeycomb structure of sponge

* B is finer than that of sponge C.

Figure 4 shows echoes returned from sponge B. One can see that the

echoes from the boundary are highly coherent and exhibit negligible phase

change in comparison to the more random echoes from inside the sponge.

These echoes are incoherent in the sense that for a certain range delay

the amplitude is random with zero mean. Note that the echoes in close

vicinity to the first echo seem somewhat weaker than those from deeper in-

side the sponge (at greater depths the echoes weaken due to attenuation).

The reason is probably due to the fact that the transducer surface is

not perfectly parallel to the sponge surface and thus it takes more time

for the incoherent term to fully develop. This slight misorientation has

practically no effect on the coherent term magnitude. However because of

athis effect, the estimation of the incoherent term should not be done in

the immediate vicinity of the first echo.

From eq. (35) we know that the ratio between the square of the aver-

age boundary echo and the average power from inside the sponge, neglecting

attenuation, is proportional to the scattering density. Thus it should

be possible to estimate the sponge density from A-mode echoes of the
B

types obtained. We will not attempt here to estimate the sponge density

quantitatively, but will show qualitatively that the experimental results

behave according to the theory.

Figures 5(P ,(B),(C) and (D) represent the echoes received from

sponges A,B,C and D respectively. Each of these pictures is composed of

four superimposed traces from four different locations in the sponge,

with identical distances between the transducer and the sponge surface.

In Figure 5(A) which represents the received echo from sponge A one can

i
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C D
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Figure 2.5(A) Four traces (one on top of the other) of the reflected echo

from sponge A. Note the large coherent component of the echo from the
boundary.

(B) Sponge B. Note that the coherent component is not as large in
comparison to the echo from within the sponge as in Figure 4(A)

(C) Sponge C. Note that the coherent component is smaller in comparison
ato the echo from within the sponge in Figure 4(B)

(D) Sponge D. The coherent component was found to be negligible in
repetitive experiments.

a

0
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see clearly that the coherent echo is large in comparison to the echod
returned from within the sponge. Figure 5(A) is similar to Figure 4 but

with the traces superimposed. One can see that the coherent component

of the echo from the boundary is not as large as that of Figure 5(A) in

comparison to the echo returned from within the sponge.

Notice also the great difference in the degree of coherency for

sponges B and C. The honeycomb structures of these sponges are similar in

shape so that we can assume that 32/-p-  is also similar. The integrals

in eq. (30) are also similar for the two sponges since they involve only

transducer and medium parameters which were the same for all experiments.

Thus the ratio between the coherent term and the incoherent term of sponge

B and C should be proportional to the scatterer density. Evaluating the

coherent term from the ratio of the average of the first echo from theI

boundary to the power from inside- the sponge, (the incoherent term) we

find the ratio to be about 2.1 for sponge B and about 0.8 for sponge C

which implies a density ratio of about 2.6. rhe actual scatterer density

that can roughly be established from the micrographs is about 2.2 which

is in sufficiently close agreement considering the fact that only four

sample points were used and that no special arrangements were made for

producing extremely smooth surfaces and for keeping the sponge surface

parallel to the transducer surface. Figure 5(D) corresponding to sponge D

with the largest honeycomb structure has practically zero coherent effect.

This is due to the fact that sponge D has much lower density than the

other sponges, too low to show a coherent term from only 4 sample points.

Figure 6 shows the echo from sponge D clamped to sponge B. Coherent

echoes are clearly seen along the center vertical line of the picture.

The angle dependence of the reflected echo was also investigated,



dh 29

[A 'Eml ll

II

Figure 2.6. The received echo from a 2 layer sponge complex composed of
sponges D and B. The coherent component can be seen on the central
vertical line. Also note that the power reflected from sponge D is less

than that reflected from sponge B.

wSulumi.l

Figure 2.7. Angle dependence of the coherent component (sponge B).
Note that while the coherent term is highly sensitive to angle variations,
the echo from within the sponge is angle insensitive.

aI
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using sponge B as a reflector. One can see from Figure 7 that the coherent

effect is highly angle sensitive whereas the echo reflected from within

the sponge is not angle dependent. In fact the behavior of the coherent

component is very much like that of a specular reflection as predicted by

the theory. The reflection from within the sponge is independent of angle

since this echo must be independent of boundary region.

It is pertinent to inquire how well the sponges used as test objects

in this work fulfill the requirements of the theoretical model. This

model places no restriction on the size of the individual scatterers or

on the number of the scatterers in the range cell but assumes the Poisson

distribution which implies that the scatterers are separated by a distance

large compared to their diameter. Weak scattering is also assumed which

implies that each scatterer produces no more than one echo. Figure 2 in-

dicates that the size of the sponge unit cells is no larger than that of

the sound wavelength of about 0.6 mm., but does not provide information

about the size separation of the individual scatterers. The fact that

the scatterers echoes from within the sponge are found to be spatially

incoherent, shows that the scatterer distribution even in the hexagonal

lattice sponges B and C, is at least pseudo-random. To establish the fact

* that the coherent reflection is not due to a change in acoustic impedance,

we measured the sound velocity within the immersed sponges, and found it

to be similar to the sound velocity in water.

DISCUSSION

As can be seen in each of the analyzed cases the ratio between the

* coherent term and the incoherent term for the plane wave approximation
4

is proportional to the scattering density profile and the function G(r,t)

(eq. (35)). In order that the upper integral will be appreciable the

Lm
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scattering density gradient should be sharp compared to the wavelength.

If the gradient is not sharp enough the integral and with it the coherent

term become negligible and the backscattered echo can be considered as

Gaussian (if the scattering density is high enough) with zero mean and

variance which is a function of the range delay. However, if the gradient

is sufficiently large the coherent term may be appreciable even if the

scattering density is low.

It was shown that the reflection from a sharp boundary separating

regions of different scattering density (or scattering cross-section) is

characterized by having a non zero mean when spatially averaged and a
a

variance of approximately

a2  [di + ail (2.34)
2

The statistics of the boundary echo can be considered Gaussian due

again to the central limit theorem with mean E(t) (eq. (33)) and variance

according to eq. (34). This result states in fact that if the scattering

density gradient is sharp enough the reflection from the boundary between

regions of different scattering densities resembles specular reflection

and it might be appropriate to model the boundary as a strong specular

reflector embedded in a high density of point scatterers. We can use

this result to incorporate boundary detection in chapters 3 and 4 where we

analyze some detection schemes for targets embedded in clutter environ-

ments.

We also showed theoretically that the ratio of the coherent signal

from the boundary of a scattering region to the incoherent signal from

inside the region (if the scattering density is low enough) is propor-

tional to the average spatial density of the scatterers multiplied by a
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*shape factor. The experimental results suggest that this technique might

be useful in nondestructively estimating scatterer size and density even

if the scatterers are much too small and much too close to be resolved.

It might also be applied to extract more information on the tissue state

in biomedical ultrasonic imaging in regions for which the boundary struc-

ture is known and is smooth compared to the illuminating wavelength.

U Another practical application that this method might provide is in

the estimation of the surface grain size of metals. In order for this

technique to succeed the metal would have to be polished and immersed in

a liquid of similar characteristic impedance.
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CHAPTER 3

THE MINIMIZATION ALGORITHM

INTRODUCTION

In chapter I we outlined sevaral algorithms and techniques for the

reduction of clutter and speckle. We found out that the techniques in

most cases do not provide sufficient improvement in clutter reduction.
B

The need for post reception algorithms for the enhancement of target to

clutter ratio is evident. In chapters 3 and 4 we will investigate two

algorithms for the reduction of clutter using split spectrum processing.

This type of processing and the algorithm to be described in chapter 3

was first introduced by Newhouse et al in 1982 (3). N. Bilgutay in his

Ph.D. dissertation empirically investigated this algorithm the so-called

"Minimization Algorithm", and showed experimentally that it provides an

improvement in signal-to-noise ratio over conventional techniques. In

this chapter we analyze this algorithm theoretically. We evaluate its

signal-to-noise ratio and its Receiver Operating Characteristics and

compare its performance to other split-spectrum algorithms.

Chapter 4 introduces a new algorithm which we call "Optimal Pro-

cessing" (The processing is optimal in the sense that for every range

delay the processor maximizes the detection performance).

These two chapters can be read independently. Historically the Mini-

mization Algorithm preceeded the Optimal Processing and was invented "by

intuition". So we start with the analysis of the Minimization Algorithm
a
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and procceed in chapter 4 to introduce the Optimal Processor. We compare

the two algorithms on the basis of detection properties at the end of

chapter 4.

The split spectrum processing was introduced by V. L. Newhouse, N. M.

Bilgutay and E. S. Furgason [3] in 1979. In this technique the wideband

spectrum of a received signal is split into several frequency windows.

The resulting signals are independent provided that these frequency

windows do not overlap, and can be compounded in ways similar to those

used in frequency agility so as to reduce clutter noise relative to target

a echo (see Figure I). Following the nomenclature introduced by Abbot and

Thurston [19] for their technique of illumination with different frequen-

cies, we will refer to their technique and to that of reference [3] as

d "frequency compounding" so as to bring out the similarity between these

techniques and that of spatial compounding.

Of the frequency compounding techniques described by Newhouse et al

[3], the most powerful used a new procedure, (the so-called Minimization

algorithm), in which the signals obtained by frequency splitting the echo

spectrum are squared and the minimum value at each delay is chosen. This

technique was found to provide a significant improvement in signal-to-

noise ratio with respect to the compounding techniques previously used

with frequency agility in either radar or ultrasound in which the signals

obtained by frequency splitting were either averaged and then squared or

were first squared and then averaged. A similar technique has recently

been applied to two-dimensional imaging [41].

This chapter is devoted to a theoretical analysis of the Minimization

Algorithm and its comparison with the two earlier known frequency agility

algorithms. We present expressions for signal to noise ratio, probability
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of detection and false alarm as a function of the number of frequency

windows, target size and ratio between the clutter variance within

and outside the range cell. The analytical results are compared with

s!i!-ulted :-r experimenta! data take'i fro= (4). Finally 't is shown

analytically that, in most cases, the Minimization algorithm provides

a much larger signal-to-noise ratio enhancement than the two classical

algorithms. However, it is found that this improvement in signal-to-noise

dratio enhancement results in a trade-off which increases the probability

of error in detection.

Although the algorithms described here could have applications in

several different fields, it should be noted, that the assumptions made

in the analysis refer only to ultrasonic imaging, in either medical

applications or nondestructive evaluation.

ANALYSIS

In this section we perform a comparative analysis of the three fre-

quency compounding algorithms under consideration. We first define our

model for the target and its surrounding randomly distributed scatterers,

and specify our definition of signal to noise ratio. We then compute the

signal to noise ratio enhancement of the three algorithms under considera-

tion, and finally calculate their Receiver Operating Characteristics (ROC).

In all three of the algorithms analyzed here we obtain the frequency

diverse signal set used for the frequency compounding, by filtering (or

"splitting") the received wide band echo from the target-clutter source

complex into different frequency bands or windows which may or may not

overlap. For the sake of mathematical simplicity our analysis in this

chapter is limited to the case of non-overlapping frequency windows.

.
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Note that the length of the range cell of the frequency compounded image
I

is inversely proportional to the bandwidth of these frequency windows.

Target Model and Signal to Noise Ratio

The model to be analyzed is composed of a strong point reflector (the

target) embedded in a high density of smaller scatterers (the clutter).

We recognize two differences between the properties of the target and any

I of the scatterers.

1. The backscattered echo from the target is much larger than that of a

point scatterer.

d 2. There is only one target in the range cell.

In order to determine the statistics of the peak target echo in the

presence of the clutter we perform a Gedanken experiment in which we keep

dthe target in its place but change the clutter configuration from experi-

ment to experiment and measure the echo voltage at a range delay corre-

sponding to the peak target echo. The statistics of the clutter without

a target in the range cell will be Gaussian (see for example (1)). It

follows that the statistics of the echo corresponding to the target range

delay will also be Gaussian but with non-zero mean. Thus we could write

two hypotheses for this case

Hl: r - m + nI  for the case of the range cell containing noise (3.1)
and a target

Ho: r - n1  for the case of the range cell containing noise only

Where r is the value of the received signal at the analyzed delay t, m is

defined as the target peak echo and n1 is the noise voltage which is a

superposition of the contribution of the scatterers (clutter) in the range

cell. nI is a zero mean Gaussian clutter noise with standard deviation
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(s.d.) a1. If we knew the statistical parameters of the signal, (i.e. a1

and m) the statistical decision rule would be trivial. For example set-

ting a threshold level at m/2 would provide the best decision rule for

minimum probabiiy of error. In ultrasonic imaging however we do not

have a priori information on either m or a1. Furthermore these parameters

change as a function of distance from the transducer due to attenuation,

shadowing or fluctuations in scattering concentration or scattering cross

section. In order to evaluate the different techniques (to be presented

shortly) we introduce the hypothesis set in the following ways

* Hl: r = m+n1

HO: r - no

Here n and no are zero mean Gaussian clutter noise echoes with s.d al

and o respectively; no will be considered always to have equal or larger

variance than n (m is as before). The need for introduci z different

noise levels outside the range-cell is to enable correct evaluation of

the minimization algorithm. This algorithm is non-linear and thus treats

signal plus noise differently from noise alone (depending on the local

signal-to-noise ratio). Therefore with this model we are able to test the

effect of algorithms on clutter with unknown parameters that may slowly

vary as a function of position. To complete the set we should have added

a third hypothesis, H2

H2 : r - n3

for the case of noise far away from the target which is smaller than that

near the target. For simplicity we exclude this hypothesis from the set.
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This will be shown to be justified, since Figure 3 demonstrates that the

algorithms considered here are monotonic in the sense that if n3<no then

the output of the processed noise n3 is smaller than the processed noise

n.. Thus enhancement of Hl over Ho is a sufficient measure of the improve-

ment in the performance of the algorithm.

Since the signal must be squared for two of the three algorititms con-

sidered below, we will define the input signal-to-noise ratio in terms

of the square of the input signal (unsplit broad band echo). Even this

condition, however, is not sufficient to define SNR unambiguously. We

therefore select a definition which matches as closely as possible the

d
manner in which SNR is computed in the simulations and experiments with

which our analysis is compared below.

We denote Zn as the square of the input signal for case H1 (target

in the range cell), and nin as the square of clutter signal amplitude for

case Ho . We define the SNR as

Zt
rd(S) in

N in

/in2 (3.2)

The average of the input signal defined as the square of the- target echo

is:

in - E{Zin} - E{(m + n)21 - m2 + (33)

and the clutter noise outside the target region is

n4-- 4. [E{n14 } ] [/2 [3a4]1/2 - i a 2 (3.4)

Thus the input SNR becomes:
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t m2+02

I ( ) Zin 1 1 (35)

Vn 2 0

in

Signal to Noise Ratio Enhancement for Non-Linear Averaging

We are now in a position to calculate the signal-to-noise ratio en-

hancement of the so-called non-linear averaging algorithm, by which, when

used in radar frequency agility systems, incoming signals at different

frequencies are first squared and then averaged. When used in frequency

compounding, as is to be analyzed here, we start by zplitting the received

wide band echo into n adjacent but not overlapping frequency bands or

windows. t This procedure is equivalent to transmitting the frequency

bands consecutively as is done in frequency agility. Therefore the results

obtained throughout are applicable also for sequential launching of

narrow band pulses instead of postreception frequency splitting of a wide

band pulse. It is known (see for example - Beasely and Ward (7)) that

the signals resulting from this procedure are statistically independent.

Since the bandwidths of the signals produced in this way are n times

narrower than those of the original signal, the resulting range cells

will be n times longer. Hence the noise power, both inside and outside

the target range cell, will be n times larger than for the case of the

input echo. (It is shown in appendix A, however, that the target peak

echo location is unaffected by the frequency splitting process with cer-

tain restrictions on the spectra of the transmitted signal. In the

appendix we use Gaussian shaped signals. However this restriction that

is introduced to simplify the mathematics is not essential as in success-

t Note that the letter n when subscripted stands for noise whereas with-

out subscript it represents the number of frequency splitting channels.
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ful experiments we used transducers whose impulse response envelope

deviated considerably from Gaussian.) Thus our two conditions to be

distinguished for the signals resulting frn= f-equency splitting can be

written as:

H : ri - m+n i=,..n
1*

Ho: ri noi i l,...n (3.6)

where ri corresponds to the received signal in the ith window at a certain

delay, m is the target amplitude that does not change between windows and

nI and no are the noise components corresponding to the cases H1 (a target

* in the range cell) and H0 (no target in the range cell). Both n1 and n

are Guassian but with different variances.

* *

The variances of nl1 and noi are given respectively by

a . a

After squaring each of the channels, the SNR of any one channel can

be written

2 2*

1CH nao2 /3 (3.7)

Summing the frequency windows and averaging we obtain:

B

tn n 2 2*2
Zout - Z ri 2 }" E {1 (i+nli } -n(m+ ) (3.8)

i-l i-1

S n - 41/2 41/2
n =[ n 4  - [n3n V n (3.9)

o i g

and the output signal to noise ratio becomes
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m2+ no 2
(S) 1(3.10)
N 0  V-3n 2

0

Combining eqts. (5) and (10) we obtain the signal to noise ratio enhance-

ment (SNRE) for non-linear averaging

0 m2 + no / (,i) - + I
SNRE-N= 1 1 n (3.11)

-- in 01(m + al _)2 + 1N al

Notice that this enchancement depends only on the clutter noise

variance a,2 in the target region, and that it varies from n at m<(al to

1//n at m>>al. Thus signal to noise ratio enhancement only occurs at

small input SNR. There is, however, signal to noise ratio enhancement

for the output signal compared to each channel of the split signal as can

1 be seen from eqts. (7) and (10) which give for this case:

S
( O SNRE = Y (3.12)

NiCH

It is this property of the non-linear averaging algorithm which is used in

frequency agility radar.

Signal-to-Noise Ratio Enhancement for Linear Averaging

We now analyze the second of the "classical" frequency compounding

techniques in which the signals produced by frequency splitting the echo

are first linearly averaged and then squared.

It is obvious that splitting the signal and summing the results will

merely restore the original signal. Thus this process does not change

the relative amplitudes of the signal with respect to clutter. Hence,
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the SNRE of linear averaging does not produce any improvement with respect

to the original broad band echo. The algorithm does, however, produceI
enhancement with respect to the individual signals produced by splitting

the echo spectrum. Thus one can show that the signal to noise ratio

improvement of the linearly averaged and then squared signal with respect

to the squared signal of a single channel is

(S n(m)2 +1
_N) = __ _ (3.13)

Nlch (a2

The fact that this signal to noise ratio enhancement approaches n at

large input SNR explains why linear averaging is preferred over non-linear

averaging in frequency agility radar when the input of the system consists

of a set of n frequencies from which a wide band signal can be constructed

by linear summation.

Signal-to-Noise Ratio Enhancement for Minimization of Squared Signals

rIn this section we develop the statistics of the minimized signal and

show that the Minimization algorithm provides a much larger improvement in

signal to noise ratio than the two techniques analyzed previously. We

a start as before by splitting the received echo into n non-overlapping

frequency bands. The time dependent signal at each of these frequencies

is then squared* and the minimum of the squared signals at each delay is

chosen, i.e.

*In order to allow a fair comparison between the techniques analyzed in

* this paper, we analyze here the effect of minimizing the square of the
signals produced by splitting the echo. This also conforms to the pro-
cedure used for the simulated and experimental data which we compare
with our analysis.
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Z(t) - min~rl(t)......4(t)]

In order to investigate the statistical properties of the random

variable z - min[Yl...Yn] where Yi represents the amplitude of the squared

signal after a certain time delay for the ith frequency window, we first

construct a simple experiment in which we choose the minimum of 2 random

variables

Z - min[Y1 ,Y2 ] (3.14)

It is then easy to show (see for instance [2]) that the new distribution

function of z is given by

FZ(z) - FyI(z) + Fy2(z) - FyY2 (zz) (3.15)

where

Fy(y) - P(Y 4 y)

and

Fy1 Y2(Yl,Y2) - P(Y1 4 Yl and Y2 4 Y2)

If we create a random variable which is the minimum of n random variable

Z - min [Yl,...,Yn]

Then it can be shown by induction that the probability distribution func-

tion Fz(z) will be*

n n-l n n-2n-1 n
FZ(z) - Fy (z) - I I Fy Y (ZZ) + I I I Fy y y (z,z,z)-...

i i-l J-i+l i i-1 J-i+1 k-j+1 i j k (3.16)
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In order to simplify the mathematics we will assume the Yi's to be in-

dependent and identically distributed which corresponds to no overlap

between the frequency windows. In this case eq. 16 becomes

Fz(z) - 1 - (1 - Fy(z))n (3.17)

and the density function of the minimum becomes

fz(z) - n.fy(z)[l - Fy(z)]n-l (3.18)

If we split the received signal echo into n windows, each of the n

time signals can be considered to be a Gaussian process.

After squaring the signal containing clutter only the density func-

tion of the squared amplitudes for each window becomes

-y yi fc(y) . 1 e 2--61o2 y 0
/2- c (3.19)

and the distribution function becomes

Fc(y) - 2 erf VY y 0
(3.20)

where
2y -x

a erf(y)-1 f e 2 dx (3.21)

The minimized clutter noise variance can now be evaluated through
ia

a 2 W f z2 fe(z)dz - [z fc(z)dz]2
z o o (3.22)

where fc(z) is the density function of the minimized squared clutterIZ

signal [eq. 18] with Fy(z) - Fc(z) and fy(z) - fc(Z).

When a target exists in the range cell the statistics of the returned

a
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echo changes and the signal can no longer be considered as zero mean. In

[A addition the variance of the noise may change if the target occupies a

significant part of the range cell thus reducing clutter from this region.

The effect on the target echo of passing it through different frequency

windows, is analyzed in the appendix and shown schematically in Figure 2

in which we plot the target echo at the output of the different frequency

windows. One can see that the maximum of the target signal is unchanged

A in height and occurs at the same time delay for all the frequency windows

and will therefore not disappear due to Minimization. Hence the height

of the target signal peak is unchanged by minimizing but its width is

* reduced. The widt) is reduced moinly due to the fact that away from the

peak region the signals corresponding to the different windows are phase

incoherent and for each range delay away from the peak it is highly

ij probable that one of these signals will be very close to zero. The

Minimization which chooses the smallest signal for each range delay, will

therefore narrow target echoes.

The received target signal after filtering and before squaring will

have the following density function for a target in the range cell

(x-m)2

a f(x)- 1 (3.23)
/V-Irl e

where al is the s.d. of the clutter in the range cell. The density func-

tion of the squared signal becomes (for a target in the range cell)

ft(y) m 1 (yT- i) 2  _ (y-+ m)2  y O
2 /2T a [e 2a*2 + e 2a2 (3.24)

11

the distribution function becomes
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Figure 3.2(A) Target echo with Gaussian envelope before frequency split-
ting. (B) Target echo after Minimiaztion, showing invariance of peak
position.
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Fyt(y) - [erf (m + /y) - erf (m )] > 0
a* (3.25)1 1

the mean signal of the target can be evaluated now through

W
ZF-  f zf4(z)dz (3.26)

0

where as in eq. (17)

n-ia ft(z) - nft(z) [1-Ft(z)] (3.27)

likewise the output noise power nout can be calculated through

S-T f z2fc(z)dz (3.28)
0

where

n-i
fc(z) - nfz -(z)(1-F l(z)I

and the signal to noise ratio of the minimized signal is

Zt( ) out (3.29)
Nout - 2--Tnout

Note that Z t  is not merely a function of the target signal but also con-

tains a contribution due to the squared noise.

* Using eqts. (26) and (28) the signal to noise ratio enhancement of

the Minimization algorithm has been calculated numerically and is shown in

Figure 3 as a function of the input SNR for the case of al m co i.e. with

* equal noise near the target and far away from it. Also shown in Figure 3

are the signal-to-noise ratio enhancement provided by the two conventional

algorithms as described earlier. It is clear from the figure that the
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SNRE for linear averaging is only unity, and that the SNRE for the non-

linear averaging algorithm is even worse.

The Minimization algorithm is seen to be highly nonlinear. With high

input, SNR the output SNR is significantly higher than for either of the

conventional techniques. With low input SNR the improvement is not as

strong and its performance actually falls below that of the other tech-

niques.

Receiver Operating Characteristics

The signal to noise ratio enhancement performance is undoubtly an

advantage of the Minimization algorithm especially if we intend to display
a

the processed signal without further processing. In this case the ratio

between the average signal to the noise power might be taken as a crite-

rion of the visual target enhancement. However, if we are interested in

target detection we have to examine the ROC of the proposed algorithms.

The fact that the signal to noise ratio obtained by the Minimization

algorithm is greater than those obtained by the other algorithms examined

does not insure that it will have a better ROC. This is illustrated by

Figure 4 which shows the probability density function of the output of a

possibly optimum receiver, compared to the output probability deasity

function for Minimization. The density function obtained by using the

Minimization can be narrower, providing a lower variance (lower noise

power). However, the tail of the probability density function for the

minimized signal is broader than that of the optimum receiver, implying a

higher probability of high peaks and with it a higher probability of false

alarm for Minimization than for the optimum receiver. We assume for

illustrative reasons that the target echo size was not significantly re-

duced (implying a high signal to noise ratio in the input) and the signal

a
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to noise ratio at the output is determined by the amount of reduction in

I Athe noise variance. The reduction in the peak target echo obviously

effects the detection properties adversely.

To calculate the ROC for Minimization we use the model of eq. 6, in-

volving uncorrelated frequency windows. In order to obtain the ROC for

the correlated case, one could follow the approach outlined in [42].

However, as stated earlier we restrict ourselves here to the case where

U the different frequency windows are not correlated. It is clear that

squaring the different frequency windows will not change the ROC. Thus it

is sufficient to refer to the absolute value of the signal for calcula-

* tions. It may be seen that for a given threshold z the probability of

detection and false alarm for a single frequency window, becomes

2 2
- (z - m) - (z -_m) (3.30)[ \ 2o0*2 -z 2.

Pr(DI) fe 1 dz + fze 1 dz] + erf (m z)

/27l 2 *

2
2 z.
2a*2

Pr(Fl) = 2 f e 0 dz - - 2erf(Lo) (3.31)
Vwa0 z a*

*where Pr(Dl) is the probability of detection for a single frequency window

and Pr(FI) is the probability of false alarm for a single frequency window

for a given threshold z. The probability of detection for the Minimiza-

tion process equals the probability that the smallest of n target echoes

exceeds the threshold, i.e. the probability that all the n echoes are

equal or greater than z. Hence for n independent windows, the probability

* of detection and false alarm for one range delay, are respectively,

n
Pr(D) - [Pr(Dl)ln 1 [ + erf (m - z)1  (3.32)

2
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similiarly, the probability of false alarm for Minimization is equal to

a the probability that independent noise signals all exceed the threshold.

Thus

n n
Pr(F) = [Pr(FI)] - [1 - 2erf z__ (3.33)

0o*

Note that in general the probability of false alarm PF of the whole A-line

depends OLL the exact nature of the fluctuations of the clutter scattering

density or scattering cross-section and should be defined as

PF - I Pr(Flki) P(ki) = P Pr(F)P(ki)
i=o i=o

where ki is the ratio of the noise std. in a cell without a target to the

noise std. of the target cell and P(ki) is the probability of finding such

a ratio along the A-line. P(ki) depends on the properties of the medium

and will change from one type of medium to another. Thus we concentrate

our analysis on the first term Pr(Flki). In order to calculate PF for a

specific case we require a knowledgc of P(ki) as well as of the function

Pr(Fjki) which are given in Figures 5(A)-(C) below.

The ROC for Minimization obtained in eqs. 32, 33 are plotted in

a Figure 5((A),(B),(C)) for two, four and six windows respectively. The

ratio R-ao/cl of noise away from the target to noise near the target, is

used as a parameter in these curves. For the sake of comparison the ROC

* calculated for linear averaging are also shown (Averaging is known to

provide the best ROC for the case ao - al). One can see that the ROC for

Minimization improves with respect to that for averaging as the ratio

* •between ao/01 increases. For example, Figure 5(A) shows that for two win-

dows averaging is preferable to Minimization for R<2 whereas Minimization

a



a54

Probabty of Detection

100

10-2.

10 3  
-'--Mirknization

10Avengin

----- Averagqn Extrapoated
10 - 4

1O-51 O ,,2 T/o,-I4 Ta oi,.1e

10-6

10 - 7  /

/

10"8

10-
.

10-8  10-7 O- 10-5 10-4 1 0-3  10-2 10-1 100

Pr (F)
A Probabity of False Alarm
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is preferable for R>4. Figure 4(B) shows that the same situation holds

for four windows. Figure 5(C) shows that for n-6 Minimization is prefer-

able only for clutter ratios away from the target to that at the target

of R > 8. We may therefore conclude that if the ratio of clutter at the

target to clutter elsewhere is small enough, Minimization will be prefer-

able to averaging for detection.

EXPERIMENT

The theoretical SNRE plots of Figure 3 which compare Minimization

with linear and non-linear averaging are found to agree well with experi-

* mental flaw-to-grain echo enhancement curves obtained experimentally in

(4). Flaw-to-grain echo ratio is defined as the ratio between the flaw

(target) peak echo amplitude and the largest echo amplitude from the

clutter present either in the squared backscattered echo signal (i.e.

input flaw-to-grain echo ratio) or the processed data (i.e. output flaw-

to-grain echo ratio). Therefore, this is an analogous but not quite

identical measurement to the SNR definitions defined for the three algo-

rithms defined above.

The experimental data shown in Figure 6 corresponds to a signal which

a is obtained by summing two separate signals: i) Grain signals obtained

from a stainless steel sample with 86 jim average grain size, and ii) A

single echo from a flat surface reflector simulating the flaw. The plots

in Figure 6 are obtained by varying the amplitude of the simulated flaw

signal and measuring the flaw-to-grain echo ratios of the squared received

signal and the processed data for all three algorithms.

S Although the particular processing parameters selected here are not

necessarily optimal for any of the processing algorithms, they result in

data representative of the general behavior of each algorithm in enhancing
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the flaw echo. A more detailed description of the experimental techniques

used to obtain Figure 6 is presented in (3,4).

Bilgutay in his experiments used at Purdue a noise correlation system

as a transmitter/receiver. At Drexel, however, we used a pulser as a

transmitter and digitized the received echo with a high speed digitizer.

To enhance the signal-to-thermal-noise ratio we averaged the received echo

by summing 50 consecutive returned A line echoes. Though the noise cor-

relation system output signal from a single reflector (see (4)) is dif-

ferent from the received signal due to a point reflector illuminated by

a pulse, the results, however, are very similar. Experimental results

using the new system are shown in Figure 7. In Figure 7(A) we combined

the received echo from a stainless steel with average grain size of about

76 pm and the echo reflected from a flat surface. In Figure 7(B) the

d signal of 7A is squared (to enable comparison with the processed signal

which is done on the squared windows) and in Figure 7(C) we can see the

signal of Figure 7(A) processed by the Minimization Algorithm. It is

easy to see that there is an apparent improvement in a signal-to-clutter-

noise ratio. We did not attempt here to optimize the signal-to-noise

ratio by changing the number of windows or the amount of overlap between

them as was done for example, in (4), as we investigate here a theoreti-

cal model and not a particular case. Thus the signal to noise ratio

enhancement in our case is less. The advantage of using the new system

i.e. using a pulser and a high speed digitizer is in the data acquisition

time. The noise correlation system uses a water delay line that employs

a motor to control the delay. As a result acquisition of a single A line

* composed of 512 sample points takes about 20-30 seconds. If the tech-

niques introduced in this research work are to be industrially implemented

a high speed acquisition system is clearly a must.
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It is clear from Figure 6 that for both averaging algorithms the out-

put flaw-to-grain echo ratio is linearly dependent on the input flaw-to-

grain echo ratio, which indicates that the performance of these algorithms

is not strongly dependent on the variation in flaw amplitude. These re-

sults also indicate that the linear averaging algorithm performs slightly

better than the non-linear averaging algorithm, which agrees with the

theoretical results shown in Figure 3. However, neither averaging algo-

rithm shows any noticeable enhancement in flaw-to-grain echo ratio experi-

mentally, in agreement with the theoretical derivations.

The Minimization algorithm is seen to show more sensitivity to the

flaw amplitude (as is evident from the non-linear nature of the input-B

output flaw-to-grain echo ratio) than the averaging algorithms. These

results are also in close agreement with the theoretical plot shown in

MFigure 3.

DISCUSSION

In this chapter we analyzed and compared the performance of three

frequency compounding algorithms in improving the ultrasound visibility

and detectability of targets hidden by additive clutter or speckle, using

a only the information presented in a single A-scan.

Many criteria need to be considered when comparing algorithms for

improving target detectability. These include signal-to-noise ratio or

* contrast, probability of detection and false alarm (ROC), bias of signal

estimates, dynamic range, longitudinal and lateral resolution, and sim-

plicity of implementation. Each of these criteria can be improved, but

often only at the expense of increased dynamic range requirements, and

the introduction of bias in target amplitude estimation.

a
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In this chapter we analyzed the first two of these criteria for the

three algorithms under consideration, namely signal-to-noise ratio and

receiver operating characteristic. It was shown theoretically and con-

firmed by experiment, that the signal-to-noise ratio or contrast enhance-

ment produced by the Minimization algorithm is far greater than that of

either linear or nonlinear averaging, provided that the input signal-to-

noise ratio is larger than unity. This holds true whatever the ratio

* between the clutter density in the target region and elsewhere. This

advantage of Minimization with respect to linear or nonlinear averaging is

however, to some extent illusory, since it may be accompanied by increased

probabilities of "target drop-out". In other words even though the con-

trast and visibility of the target is improved on the average by Minimiza-

tion, there is also an increased probability that the target echo will be

supressed by the subtraction of an awkwardly located noise spike.

These consideration are quantitated by the calculated receiver oper-

ating characteristics illustrated in Figure 5 which show that for a given

false alarm rate, the probability of detection for Minimization is only

improved over that for linear averaging, when the clutter density near

the target is at least four times smaller than that elsewhere. This

situation is in fact not uncommon, since in attenuative media, the clutter

echo from regions close to the transducer is larger than that from deeper

lying target regions and so might be the case in fluctuating random media.

* This situation is not rectified by the use of time-varying gain except in

the relatively rare cases where the attenuation and clutter density are

known at every point of the medium.

1 lo it, fa.ct ignorance of the local properties of the medium which

limits the effectiveness of our procedures. In the forthcoming chapter we

derive the optimum receiver for the target model analyzed in this paper,
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RESOLUTION: Since Minimization involves filtering the target echo with a

narrow bandwidth filter, it reduces the longitudinal resolution in the

sense that target echoes may enhance or depress each other over a distance

c/2AF where c is the velocity of sound and AF the filter bandwidth. Thus

a strong target might partially suppress an adjacent smaller target.

However, because of the effect discussed in connection with Figure 2,

Minimization narrows the processed target echo to about one wavelength ofI
of the highest center frequency for splitting the spectrum, i.e. produces

sharpening in the processed image.

CONCLUSIONS

In this chapter we analyzed the so-called Minimization algorithm and

dcompared its performance in improving the visibility of targets hidden

by additive time-invariant clutter or speckle noise, with that of two

"classical" algorithms used in frequency agility radar, linear and non-

linear averaging. All three algorithms "frequency compound" signals

produced by filtering a single A-scan ultrasound echo with a number of

non-overlapping spectral "windows". The operation of these frequency

compounding algorithms is therefore relatively simple since they operate

on only one A-mode echo at a time.

Minimization was shown to be capable of producing significant improve-

ment in SNR and is predicted to produce sharpening in 2-D images. Neither

of these effects are produced by the other two algorithms studied.

Linear averaging is known to be the optimum detection algorithm for

additive noise and accordingly was found to give the best ROC of the three
0

algorithms tested. However, Minimization is shown to produce better ROC

when the clutter near the target has a standard deviation which is at
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least four times smaller than that elsewhere. Such cases are often en-

I countered in attenuating media due to shadowing by large targets, and for

media which exhibit fluctuations in either scattering concentration or

scattering cross-section along the A-live. The analyses in this chapter

have been restricted to non-overlapping frequency windows. The conclusions

reached should, however, also apply to filtering with overlapping windows,

as is shown experimentally in (18) and will be further discussed in

A chapter 5.

A
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CHAPTER 4

OPTIMAL PROCESSING

INTRODUCTION

*Chapter 3 was dedicated to the analysis of the minimization algorithm.

We found out that this algorithm provides a significant improvement in

signal to noise ratio with a marginal loss in dynamic range. However, the

Receiver Operating Characteristic (ROC) was found to be less impressive.

Only for a high ratio of variances between a cell containing clutter and

the target range call was the ROC found to be superior to averaging.

In this chapter we introduce a new technique for improving the ROC

of the received A-line. This technique which we call "optimal processing"

is also based on split spectrum processing. In the first part of this

chapter we introduce the theoretical basis and motivation for split

spectrum processing. We find that in order to construct the optimum

receiver (a receiver that will minimize the probability of error for a

* •given threshold) we should split the spectrum into independent frequency

windows whose number is directly proportional to the required range

resolution. From the set of random variables that correspond to each

range delay we construct the receiver algorithm. For trivial cases i.e.

for cases where the noise and signal spectra are white in the frequency

range of interest, the algorithm becomes the estimated mean divided by

* the estimated standard deviation of the spectral decomposition components.

We proceed to evaluate the ROC of the new algorithm for media with

fluctuating clutter noise and compare it with the ROC obtained by thresh-

a m mmm mm mmmm
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olding the received signal without special processing. Then we introduce

a simplified version of the mathematical model for which we replace the

matched filters sinwT(fn-f)/r(fn-f) obtained in the optimum receiver

derivation, with Gaussian shaped filters and show that its performance

is very close to the performance of the mathematical model. We then

implement this simplified algorithm and show experimentally its effective-

ness in target enhancement. Finally we evaluate experimentally the

resolution performance of the new algorithm in comparison to Minimization.

THEORY

As is known, the received clutter noise power varies as a function

of range delay due to chanaeg in aattering density, scatterlng cros-

section, attenuation, beam intensity etc. However if we take a small

enough time interval [Ti,Tf] of the received echo e(t) we can assume in

most practical cases that the statistical properties of the echo in that

interval are constant. We will treat the problem of clutter reduction

in this interval [Ti,Tf] as a problem in statistical decision theory.

The general Hypothesis set can be written as follows,

Hl: r(t) - Vx(t-Tt) + n(t) Ti < t < Tf 4.1

Ho: r(t) = n(t) Tf - Ti - T

where n(t) is a Gaussian random process with variance a2, a, p and rt are

unknown and x(t) is a known signal. Though the returned echo [-, "] is

in general not stationary, we assume that in the interval of analysis

[Ti,Tf] the noise process n(t) would be a sample function of a stationary

process (a requirement that is met if the interval [TiTf] is sufficiently

small). The problem is to find a decision rule as to whether V=0 or *O

where a, p and Tt are unknown.
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Let us consider first the problem for Tt known. In this case as we

shortly show, the decision rule, can be constructed from the set of random

variables obtained by an orthonormal expansion (Karhunen-Loeve expansion,

see for example (42)) of the random process r(t). In this technique we

transform the problem from a random process problem into a random vari-

ables problem (see for example Scharf (43)). These random variables are

the ri's in the expression

r(t) - ri *i(t) 4.2
i-O

where the functions *i(t) are orthonormal. To explain the procedure of

obtaining the coefficients of the expansion (the random variables) we

assume for simplicity that the spectrum of n(t) is rectangular as shown

in Figure 1, and that the spectrum of x(t) is no larger than B (There is

an apparent contradiction between the time limited interval of the ana-

lyzed signal r(t) and the limited bandwidth of the rectangular noise

process assumed in the example. However this assumption is often made

to simplify an analysis and in most cases is found to be justified).

To find the *i(t) one solves the integral equation,

T
xiji(t) - ;7 Rnn(t-T) ti(r)dT 4.3

where Xi is both the eigenvalue and noise power associated with the i-th

orthonormal function, and Rnn(T) is te autocorrelation function of the

noise process. One can show that

(t) eJ2nfit fo f f;fT
) for fi = ifo ; 0 - - < t < 4.4

,T T 2 2
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and that

i  Sn(fi) 4.5

For our choice of spectrum (shown in Figure 1), all the Xi's and

thus the variances of all the orthonormal coordinates are identical. This

makes them identically distributed (if we have only clutter noise in the

input). Naturally we are not interested in the orthonormal functions

outside the frequency band B of the clutter noise since they carry no

N information. (We assume that the spectrum of x(t) is no broader than

that of n(t) so that there is no energy outside of the frequency band of

width B). Note that for the general case where Sn(f) is not white in

* the frequency range of interest the ri's will not be identically distri-

buted. The assumption of a white spectrum in the example is therefore

merely used to provide an insight to the general solution of the problem.

In order to obtain the set ri's of the random variables associated

with the K.L expansion we have to perform the process shown in Figure 2.

Since fi-fi-Ilfo=, the number of filters i(T-t) and the number of inde-

pendent random variables rl,...rn is directly proport!onel to the observed

time T and equals,

n-BT 4.6

The chosen time window [Ti,Tf] determines the resolution because we must

assume that only a single target exists in this window, since otherwise

the assumption that the target signal x(t) is known would no longer be

valid.

Now for the assumption that the target location in r(t) is known we

construct the likelihood ratio test (LRT) (The LRT gives a decision

criterion subject to a certain risk function to determine which of two

H
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possible hypotheses is true. It is composed of the ratio of the prob-

. ability density functions of the observables of the two hypotheses.) from

the set of random variables ri's. The random process problem set in

eq. (1) can now be restated as a random variables problem

HI: ri = p xi + ni
4.7

Ho: ri = ni

An where the xi's are the spectral decomposition components ri of the signal

x(t) fed into the system shown in Figure 2. Instead of solving directly

the problem for which the noise spectrum is white in the frequency range

* of interest (as in our example) we quote first the general solution to

the problem of colored Gausian noise. Later we return to our example as

a special case of the general solution.

[A If the spectrum of the received clutter signal is not white in the

frequency range of interest or the signal was not whitened before decom-

position (the signal can be also whitened during decomposition by assign-

ing appropriate constant multipliers to the filters *i(t)), the likeli-

hood ratio test (LRT) becomes (see for example Scharf and Lyte (43),

Helstrom (15)),

nI xiri/Xi
i-l

L(r) - 4.8

(n r2/X i  n r [ xi]2)11/2
1 r - I I Il/

n-i i-i i-i Xi

where Xi is the eigenvalue associated with the i-th orthonormal coordinate

and xI is as above. The statistics of L(r) is the student t distribution

and we will discuss some of its properties later in the chapter. For the

BA
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processing described here we whiten the clutter spectrum making it similar

to the example and assume that the target energy spectrum is similar to

the clutter power spectrum, which means that the target is assumed to be
n 

xa strong point reflector. We can then scale x(t) such that __ = I so
iffi Xi

that

n

ii-

but xjx and Xj=X for a white spectrum within the frequency band B so

2
or 1

2 4.10
n

and the LRT becomes

n
1 ri
n

L(r) - - 4.11

Gr

This is nothing else but the estimated mean of the spectral decom-

position components ri's divided by their estimated standard deviation

and can be written

L(r) - r 4.12

aa

To estimate a2 which is the noise power after whitening we have to

calculate

a n a
O = { ( 1 - [ rij 2 )}1 / 2  4.13

i- = ni-1

06
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and the LRT becomes

niI ! ri
nil

L(r) - 4.14
11 n
Sr2 1/2{-- .1. ( r 4- it ri] )}

n-i il n

As the number n of the orthonormal functions increase the performance of

the algorithm in estimating a improves. Note that,

n n Tf Tf n
I I ri i I f r(t) *i(t)dt -- f r(t) I i(t)dt 4.15
ni. i=l Ti  n Ti i-l

2
Recall that for eq. 4.14 to hold X 1

x n

n n

Pil nj.,1

so

n
Oi(t) - '.-- x(t) 4.17i-I

and eq. 4.12 bee-es

a

n - Tf
I ri /! f r(t)x(t)dt 4.18

iil IT i

A which is seen to be an estimate of the energy of x(t) in r(t). So eq.(14)

is just the value of the estimated signal energy at the analyzed range

delay divided by the estimated standard deviation of the clutter in [Ti,

* TfJ. Naturally as the number of elements in the expansion increases so

does the accuracy of the variance estimate and the performance of the LRT.
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Now that we have derived an optimum LRT to decide whether an individu-

al range cell does or does not contain a target, we return to the original

problem in which we treat the A-line as a collection of m range cells.

Each of these corresponds to a certain range delay of length T and pro-

duces n spectral decomposition components. Since we assumed n(t) to be

Gaussian these n ri terms for each cell are samples from a Gaussian

distribution. It is important to note that the cell statistics can change

from cell to cell due to eitber a change in scatterer density which leads

to a change in the variance of r(t) or due to the existence of a target

in the analyzed time window which leads to a change in its mean. (In

* chapter 2 we showed that such a change (gradient) should lead to a co-

herent reflection. However if the change is slow compared to a wave-

length (as is the assumption here) the coherent component is negligible).

Recall that we do not have any information on the location of the target.

Thus we have to find a LRT for every range. There are three possibilities,

1. The analyzed range delay is such that T=Tt where Tt is the target

range delay. This case is referred to as HI and was analyzed earlier.

2. There is no target in the time window of length T. This case was

also analyzed and is referred to as H0 .

3. There is a target in the time window T but T*Tt . For now we assume

that the resolution cell is no smaller than the anal zd time interval

T. In this case multiple targets in the time interval T should be

* interpreted as a single target. We will return to the resolution

performance of this algorithm later in this chapter.

If we presented the likelihood ratio as a function of range delay we

would obtain a large signal wherever a target exists in the analyzed range

cell. In the absence of a target the estimated mean is expected to be

small and the processed output would consequently be small. We would
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also be able to set a threshold and reject signals below a prespecified

signal to noise ratio.

To maximize the resolution of the algorithm (eq. 14), set the fre-

quency windows should overlap so that they can be as wide as possible.

The n random variables corresponding to a certain range delay would then

become correlated. If the filters are correlated then the correlation

between any two channels containing only clutter can be ahown to be

(assuming that the signal is whitened before processing so the clutter

power in all the channels is identical)

a 0i,' j Fi(f)Fj(f)dt 4.19

f* .IFi(f)12df

For Gaussian windows (see (4))

f -f 2
- ln 16( 1 )

Pi,j - e 4.20

where b is the bandwidth of the windows and fi, fj are the center frequen-

cies of windows i and J. The LRT for this case would be (19)

L(r) = xT K-1 r 4.21

where K is the covariance matrix which is composed of the above oi,j's and

x is the mean vector of the set. This can be obtained by feeding the

system in Figure I the signal x(t), with the coefficients rl,...rn in the

figure interpreted as Xl,...x n . The vector t is composed of the set

rl,...rn obtained by feeding the system in Figure 1 the signal r(t). To

construct K we need also to know the variance of the channels

a!IIll il l/l i ll l n
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x2 ~12 1
x3 K a2  r

n__1 rn

a can be estimated from the ri's i-l,....n following the same approach

as before (eq. 13), if the noise spectrum is white. For colored noise

we should whiten the signal before processing and then apply eq. 14.

It is show-. later that the range resolution of the optimum receiver

algorithm is not significantly degraded in comparison to the unprocessed

signal, even when the frequency windows do not overlap. We will therefore

not consider the case of overlapping frequency windows for target enhance-

ment further.

d Detection Performance

The next step is to evaluate the performance of the optimal processor

which is optimum in the sense that it provides the best probability of

detection for a given probability of false alarm for the analyzed range

cell as defined in eq. (14).

We recall that in our procedure the original signal is segmented

into m cells and then spectrally decomposed to obtain n random variables

from which the LRT is calculated as depicted in Figure 2. Now let us

assume a target somewhere along the A-line. We define the Probability

of Detection, Pd as the probability that the processed data of the cellS

containing the target will exceed a certain threshold. The probability

cf r.lse alarm Pf is defined as,

Pf = I P(flki)p(ki) 4.23
i-I
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where P(flkl) is the probability that the processed data of the i-th

cell having a variance ki times that of the target containing cell will

exceed the threshold set for the k-th cell (the target cell). p(kj) is

just the probability of finding such d ratio along the A-line. Naturally

for each scenario of fluctuations appearing along the A line a different

Pf will exist. In the next section we will describe the detection per-

formance of the optimal processor for different ki-se

It is clear that the performance of an algorithm depends strongly

on the distribution of p(ki). Naturally we cannot construct an algorithm

that will be optimal for all possible fluctuations in the clutter variance
a

along the A-line (i.e p(ki)). A rough measure of comparison between

algorithms might be to check P(flki) for the worst possible performing

cell (the cell with the highest variance) and probability of detection

for the cell with the lowest clutter power. In order for this test to

be meaningful the algorithm should be monotonic in the sense that for 2

cells with oI > 02 the probability of false alarm of the processed data

of cell I will be equal or greater than the probability of false alarm

of the processed data in cell 2.

It is important to note that the best detection procedure will not

necessarily provide the best Receiver Operating Characteristics (ROC) for

this problem. (Recall that ROC is a plot of the probability of detection

as a function of probability of false alarm of a receiver for varying
a

thresholds where usually the signal to noise ratio is a parameter). We

will give a simple example for this argument. If all the m cells had the

same variance, the optimum algorithm is the sum of the elements in each
a

of the cells. Since the variare in all the cells is the same, the

variance in the LRT becomes a proportionality constant and the LRT reduces
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to the sum of the elements in each of the cells. The variance now no

jlonger influences the ROC, it merely changes the threshold for which the

probability of detection and the probability of false alarm is computed.

This example shows that the best detection scheme for each of the cells

(Which is composed of the estimated mean divided by the estimated standard

deviation) is, in general, not the best algorithm for improving the ROC of

the whole A line. The conclusion is that our optimum receiver has to be

j checked against other algorithms for different ratios of variance in the

target range cell and the variance elsewhere. Depending on the actual

conditions, an optimum algorithm can then be chosen.

* IV we knew the ratio k between the variances in the target range cell

and the cell for which P(flki) is calculated, then an optimum receiver

could be constructed. To derive the LRT for this case we use eq. 327 in

I chapter 2 vol. 1 of "Detection, Estimation, and Modulation Theory" (42).

This equation is the general binary solution for the LRT for Gaussian

random variables with different vector mean and covariance matrices. In

our case the random variables are independent and the LRT reduces after

some algebra to,

n n
1 r2(l-k) + k( ri)2 - L(r) 4.24
2 i- nil

where k is the ratio of the variance of the cell containing clutter only

* to that of the target cell.

In this case the probability of false alarm will be determined by the

cell containing only clutter and the probability of detection will be

* determined by the target size and clutter noise in the target range cell.

p(flki) and Pd are calculated through,
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Pd - f fL (L1)dL1

4.25

Pf I f fL (Lo)dLo
Y 0

where L1 and L0 are L(t) for H, and H0 respectively

Eq. 24 shows that the LRT can range from the sum of the r i terms in

each cell for k-il to a close approximation of the variance of ri for

k>>l. Naturally choosing a given k for constructing the receiver would

worsen the performance for any ratio which is greatly different from the

chosen one.

a In general, the probability density p(ki) of the clutter in the

various cells of the A line will vary from one A line to the next, and

will usually be unknown. Thus there is usually not enough information to
A

construct an optimum receiver for a whole A line, and even if there were,

the form of the algorithm would usually have to be changed for each A

line which would be an extremely impractical procedure. We will therefore

in most cases be constrained to restrict ourselves to the LRT of eq. 12

which provides the maximum probability of detection for a given prob-

ability of false alarms for a target in one single range cell.

Before analyzing the performance of the LRT we point out an important

property of the function L(It) which is identical with the well known

Student t distribution. For this distribution

2 (n+l
Lo (nL)0) 2r(n/2) [ + for 1 0 4.26

,n2-s2/2
nn/ 2 eL,2 /2

fLI(LI) r(n+i+1)(i)[_-L ]1/2 s =/

1ir(n/2)(n+s2)n+i/2 .O 2 it n+Lj
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where fL (LI) is the density function of L(r) if a target exists in the

range cell and fLo (Lo) is the density function of L(e) if no target exists

in the range cell (V=O).

This distribution can be seen to have the property that the prob-

ability density function fL (Lo) is only a function of n, the number of
0

windows. Thus for U-0, i.e. in the absence of a target the variance of

L(f) is independent of the variance of the spectral decomposition com-

j ponents ri. One of the consequences of this property is that even though

an A line may exhibit strong noise fluctuations in different range cells,

its LRT L(i) will have constant variance in every range cell. Another

* consequence is that using eq. 12, the false alarm rate for cells not

containing targets for a given threshold is independent of The noise in

these cells. This is clearly a very useful property.

• The number of variables in the LRT equation (eq. 11) is too large

to fully demonstrate its detection properties on one graph. We chose

therefore to set a constant false alarm probability and plot the prob-

ability of detection as a function the input of signal to noise voltage

ratio in the target range cell. False alarm probability Pf and prob-

ability of detection Pd are determined from aqs. 25 and 26, using tables

*of the student t distribution. The parameter was chosen to be the number

of elements in the expansion (or the number of independent windows). In

Figure 3 and 4 we present the theoretical results for several n the number

of windows. It is clear that increasing the number of windows improves

the ROC. Of course as n increases the width of each spectral window

decreases which increases the time window [Ti,Tf] and then worsens the

* resolution. Figure 3 correspond to a constant probability of fAlse alarm

(CFAR) of 0.01 and Figure 4 correspond to a CFAR of 0.05. One can im-

mediately observe that as the number of elements n in the expansion

B m mmm mm Im mm m m m m l m ~ mm
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Figure 4.3 Detection probability versus signal-to-noise voltage ratio
for optimal processing for various expansion sizes n. The probability
of false alarm is set to 0.01. (taken from 36)
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increases the performance of the algorithm improves. As mentioned above

the performance as shown is also independent of the relative strength of

the clutter noise in the different cells but depends only on the signal

to noise ratio in the target cell. Thus if we had only clutter with

varying parameters along the A line the processed data would have the

same statistical properties for all the cells containing only clutter.

In general signal processing algorithms used to reduce clutter do

not give results which are independent of the clutter noise in the pro-

cessed range cell. Thus in the "Minimization" algorithm, analyzed in

Chapter 3 the variance of the processed clutter data is a function of

the uuise variance of the cell before processing and therefore Pf strongly

depends on the nature of the fluctuations of the clutter noise p(kj).

Note that for the optimal processing described by eq. 12 Pf is independent

of the fluctuations in the clutter noise variance p(ki) since in this case

P(flki) - Pf - constant so that Pf - [ p(flki)p(ki) . Pf : p(ki) -e
i-I I-i

In figures 5(A)-(D) the performance of the minimization algorithm is

compared with that of the optimum receiver on the basis of detection

properties for different values of the ratio k of clutter standard devia-

tion Go in the 'worst' cell of the A line to the clutter al in the target

range cell. Each graph corresponds to a certain value of k. We set

p(flki) in all the graphs to be 0.05.

In general one can see that the performance of the optimum receiver

is independent of k because the 'Student' t distribution variance is inde-a

pendent of the clutter as explained above whereas the performance of the

Minimization algorithm is good only for high enough input signal to noise

ratio. (However the signal to noise ratio obtained by the Minimization

algorithm is much better than the SNR obtained by the optimal processing

due to the nonlinear nature of the Minimization algorithm as is shown in
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Figure 4.5(A) Detection probability versus signal-to-noise voltage ratio
for optimal processing, the original deconvolved signal and the minimuiza-

tion algorithm for coolinl. co/al is the ratio between the stan-
dard deviation of a cell containing only clutter and the variance in the
target range cell.
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chapter 3). Figure 5 also shows curves labelled "original signal". For

Athis curve the LRT function used was that obtained by simply summing the

outputs of the spectral decomposition components ri for each range cell

(without division by the estimated standard deviation). The use of the

sum of ri's as an algorithm is attractive due to the simplicity in imple-

mentatiin and with the simplifications that we introduce later the optimum

processing for n-- is equivalent to simply thresholding the original

signal deconvolved in the frequency range of interest to obtain Pd and Pf.

These were computed using the equations

00 (x-m)2
P d - fe "a dx

2-x

a _IPf in fe d
f ko y 4.27

Figure 5(A) shows that, as was pointed out earlier, this type of proces-

~sing is also the optimum if the clutter noise power is a constant along

the A-line (kinl). It is clear that for higher ratios of k the performance

of such an algorithm will deteriorate, as is seen in Figures 5(A)-(D).

a The results shown in Figure 5 (A-D) may be summarized as follows.

For a finite number of windows the Minimization algorithm, (which is very

powerful in enhancing signal to noise ratio) is superior to the optimum

a receiver scheme in detection performance for large input signal to noise

ratio. This is due to the fact that while the optimum processing is

insensitive to the variances ratio k the Minimization performs especially

* well in high signal to noise ratios for which the peak target echo is

practically not effected by the low noise power in the target range cell.

TOZF
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However the high noise variance in the worst performing cell is strongly

reduced by Minimization in a non linear fashion that provides a superior

ROC. As the ratio k increases the apparent advantages of the optimal

processor over the Minimization algorithm and the unprocessed signal

become more evident. Note also that for high enough ratio (e.g k-8) the

Minimization algorithm performance is superior to that of the unprocessed

signal. A surprising result is the fact that for low clutter density

fluctuations (k-1 and k-2) increasing the number of frequency windows

results in deterioration in the ROC of the Minimization algorithm.

* EXPERIMENTAL RESULTS

In this section we describe an experimental realization of the

optimum detector algorithm. Some simplifications are made that allow

d easy implementation of the technique in practical applications.

Recall that the filters in the K.L expansion are matched filters with

frequency response shape of sinw T(fn-f)/r(fn-f). In our experimental

realization Gaussian shape filters were used in order to taper the

effect of the sharp edges of the window. This use of non-matched filters

will now be justified after clarifying some assumptions and summarizing

some known results.

Up to this point we have not concerned ourselves with the transmitted

spectrum shape. In ultrasound imaging it can often be assumed, due to

* the transducer impulse response, that the spectrum shape of the received

signal is roughly Gaussian. It is shown in appendix A that filtering

such Gaussian signals with Gaussian shape filters result in Gaussian shape

* outputs. If the frequency spectrum of the input signal is much broader

than that of the filters the mean frequency and the standard deviation of
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the output signals will be practically unchanged. It is also shown that

a the peak amplitude of a target echo will appear at the same range delay

for all the filters whatever their center frequency. If we normalize

each of the filters (an operation which is equivalent to whitening the

process within the desired frequency range and practically involves as-

signing a constant multiplier to the filters so that their output power

in the different channels will be identical), then the peak amplitudes

appear at the same range delay and have the same amplitude.

We can assume that the clutter noise spectrum in the input of each

filter is much wider than the filter bandwidth, thus for the sake of com-

s parison between the matched and non-matched filters we can assume the

clutter noise to be white. In this case (see for example (44)) the de-

tection properties of a matched filter at a specific range delay depend

A as is well known on the parameter d=4- - j-. m which is the parameter that
2No 2a

defines the ROC performance of a receiver. Where E is the energy of the

signal to which the filter is matched, No is the one sided spectral

density of the clutter noise, m is the mean of the matched filter output

for a target plus noise in the filter input and a is its standard devia-

tion. For the detection of a signal with additive Gaussian noise the

distance is a function of the signal strength m and the noise variance.

For mathematical simplicity assume that the filter is matched to a burst

of duration AT instead of a Gaussian shaped signal. In this case

E - A 2 AT
2

and

d ; 2  NOB ; B 4.28
4No 4NoB 2o T
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So the distance m/2a for a filter matched to a burst of length .T is

A/2N 0oB (see for example 59) but this is the statistics of the range delay

corresponding to the expected peak target echo when filtered by a simple

filter of bandwidth b. Its mean will be A and the standard deviation will

be / NoB (assuming of course that the peak echo amplitude will not be

reduced considerably due to filtering). We conclude therefore that it

is possible to use simple filtering instead of matched filtering without

a substantial loss of performance. In our realizatiun the maximum likeli-

hood ratio was computed from the estimated mean and variance from the n

outputs of the non-matched filters for each range delay.

In the experiments the target echo and the clutter echo were created

separately. The clutter signal consisted of the echo received from grainy

metal, whereas the target signal consists of the echo reflected from a

flat surface. This makes it easy to change the signal to noise ratio of

the received echo. The received signal was amplified and digitized at

the RF level using a 50 MhZ digitizer (Biomation). The information from

the Biomation buffer was read into a PDP 11-23 computer. An FFT was then

performed and the spectrum was split into 10 non-overlapping Gaussian

windows. Instead of using eq. 8 directly we adjusted the filters gain

a to obtain a white spectrum in the frequency range of interest and then

applied eq. 12.

In Figure 6(A) a typical echo from a target plus clutter echo is

shown. In this case the spectrum of the received signal was split into

10 channels with identical bandwidths. Though there was some correlation

between the channels the amount of overlap was relatively small and we

U assumed the channels to be uncorrelated. This assumption simplifies the

computations needed to obtain the Likelihood Ratio Test. In Figure 6(B)
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Figure 4.6(A) Simulation of a received signal from a target plus clutter.
(B Processed output for optimal processing b-0,2 MHz and n-10 windows.
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the Likelihood Ratio Test is plotted as a function of delay. It is seen

*that the ratio reaches its peak at the target range delay as is expected.

For target enhancement we might consider using the LRT instead of the

original signal. This will eliminate problems of incorrectly presenting

target size embedded in homogenous (i.e. uniform) type clutter (such as

grains for example) due to attenuation or shadowing. In these cases the

local signal to noise ratio is the right measure of the target size.

RESOLUTION AND RANGE BIAS

The theoretical evaluation of the resolution and range bias for both

* the Minimization algorithm and the optimum receiver present a challange.

Though numerical calculation is possible it was found easier to evaluate

these properties empirically.

We examined these properties by simulation. Two target echoes at

different distances were summed and both types of processing were applied

to the signals. These distances were changed from half a wavelength up

to several range cells and three parameters were observed. The first

was the ability to resolve the signals by eye, the second was the effect

of the processing on the amplitude of the processed signal and the third

* was bias (i.e change) in the distance between the signals due to proces-

sing. It is clear that signals in proximity will have an adverse effect

on each other. For the Minimization procedure this is due to the increased

* probability of one echo target reducing the other and for the optimum pro-

cedure it is due tQ increased variance caused by the neighboring target.

It was found that the resolution is phase sensitive. For example

0 for about half a wave length distance between the signals, which means

that they were completely unresolved before processing, they were resolved

i a
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for the optimal procedure after processing but were very noisy for the

Minimization algorithm, as can be seen in Figures 7(A),(B) and (C) for

both the suboptimum receiver and the minimization algorithm. However for

an initial distance of a full wave length the signals were unresolveable

(Figure 8). This behavior was found to be cyclic, i.e for an even number

of half wavelengths the signals were not resolveable while for an odd

number of half wave lengths the signals were resolveable for optimal

a processing and noisy and meaningless for minimization. For a distance

larger than the original range cell (defined by the bandwidth of the

transmitted signal) the signals were always fully resolveable for optimum

processing (Figures 9,10). (However for minimization the signals were

resolved only for a distanct of 8 wave lengths and above). It is impor-

tant to note that these empirical results were obtained for a certain

A system and two processing configurations, namely 5 MHZ transducer and

either, 4 or 10 frequency windows.

Further work is needed to establish the general resolution properties

of the optimum receiver and the minimization algorithm. However it seems

that there is no significant degradation in resolution produced by these

types of signal processing for targets positioned by more than one range

a cell apart.

The above results were obtained without any added noise and it is of

importance to investigate these results under noisy conditions. A clue

a to the behavior under noisy conditions can be learnt from the effect of

the processing on the signal amplitude of the two adjacent signals. One

can see the amplitude of the processed signals as a function of separation

a It is seen that in general the amplitude of the processed data is reduced

substantially if the separation is smaller than the input range cell. In

a
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Figure 4.7(A) Simulation of the echo from two targets 1/2 a wavelength
apart.

(B) Processed output for optimal processing of the signal in Figure 11(A).
Note that the targets are resolved but that there is a bias in the dis-
tance between them and that their amplitude is substantially reduced.

(C) Processed output for, the minimization algorithm of the signal in
Figure 11(A) Note that the signals are not resolved and that the ampli-
tude of the processed data is substantially reduced.
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Figure 4.8(A) Simulation of the echo from two targets a full wave length
apart.

* (B) Processed output for optimal processing for the signal in Figure 12(A).
Note that the targets are not resolvable but that the amplitude is large.

(C) Processed output for the minimization algorithm for the signal in
Figure 12(A). Note that the targets are not resolvable.
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Figure 4.9(A) Targets separated by 3/2 wavelengths.

(B) Processed output for the Optimal Processing. The targets are re-
solvable and there is a bias in the distance between them.

(C) Processed output for the Minimization Algorithm. The signals are
very noisy and not resolvable.
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(C) Processed output for the Minimization Algorithm. The output is noisy
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Figure 4.11(A) Targets separated by 8 wavelength.

(B) Processed output for the Optimal Processing. The signals are fully
resolvable and there is no bias in the distance between the signals.

* (C) Processed output for the Minimization Algorithm. The signals are
fully resolvable and there is no bias in the distance between the signals.
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order to evaluate the results qualitatively we have to compare the ampli-

tudes of the processed data to the value of signals embedded in noise

after processing. For the case of the optimum receiver we can readily

conclude that if the signal to noise ratio is higher than 4 or 5 the

results would not change considerably because the effect of the signals

on each other would be stronger than that of the noise. Minimization

does not perform as well for low signal separation. For example for

approximately half a wave length separation the signal is reduced froma
31,000 to - 2.4 which for any reasonable signal to noise ratio in the

input is negligble. However for a full wave length separation (the tar-

gets are not resolveable) the signal is reduced to only 1747 while for
S

a separation of a wave length and a half the signal again is almost

destroyed. For a separation of more than the original range cell the

signals will appear with a relatively high signal to noise ratio.

(Figures 10, 11).

It is important to note that while under some conditions two adja-

cent signals will be separated by the processing there will be a bias in

the distance between the signals after processing. This bias was experi-

mentally found to be very large for low separation between the signals.

For separation larger than the original range cell the bias was found to
a

be negligible. An example of such bias can be seen in Figure 8. One can

see that the processed signals are separated by much more than half a

wavelength which is approximately the original distance between the

signals.

We can conclude that for signals which are separated by less than

the original resolution cell the results for both minimization and the

suboptimum receiver are not reliable and can result in almost a complete

loss of both signals.

L
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The reason for the surprisingly excellent range resolution perfor-

U mance is due to the fact that in practice each of the signals has several

peaks. The estimated variance at each of the range delays corresponding

to these peaks due to the neighboring signal is clearly phase sensitive.

The variance estimate at each peak would be different and will depend on

the exact location of the peak in respect to the neighboring signal. It

is very likely therefore that in at least one of the peaks range delay,

the variance estimate will be low, making the ratio large. This explains

also the bias in the range distance when the targets are very close to

each other. If the enhanced peak is not the main peak target echo the

target range delay of the processed data would seem to be biased.

SUMMARY AND CONCLUSIONS

In this chapter we introduced a technique for clutter reduction

which maximizes the ROC performance in each range cell. This technique

has the property of a noise riding threshold as its performance is inde-

pendent of the local properties of the clutter (but is dependent on the

local signal to noise ratio). It was pointed out, that determining algo-

rithm for clutter reduction on an A line, requires a knowledge of the

fluctuations in the power clutter along that A-line. In general each A

line would require a different processor. It is therefore more practical

to use a detection algorithm which is optimum for one cell. This gives a

likelihood ratio test of m/a - Student t, independent of clutter. We

found out that as the fluctuations in the noise variance increase so does

the performance of the optimal algorithm in comparison to minimization

0
and the deconvolved original signal. (Execept for k-l for which the

unprocessed signal is the best). However in contrast to Minimization the

'.
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optimum receiver requires a high dynamic range. Depen.-g on the input

noise variance the processed output can range from infinity for zero

noise power to almost zero for signals embedded in noise. The optimum

receiver algorithm obviously provides the best detection procedure for

individual cells. However as was pointed out in chapter 3 there are

several features that determine the performance of an algorithm as a tool

for target enhancement. We discussed already the ROC, dynamic range,

a resolution and bias of the optimum receiver. However one of the most

important features of an algorithm is the improvement in signal-to-noise

ratio for which the Minimization is much superior to the optimum receiver.

* (Note that we did not calculate the signal-to-noise ratio for the optimum

receiver as the LRT m/ is itself a measure of the signal to noise ratio).

SNRE is most important when additional information on the target is

Am available. For example if the target is known to have a line structure

(for an image composed of A-lines) the contrast of the line target to the

background noise is more important than ROC of a single pixle. If several

pixles along the A-line are missing due to the processing the picture

will still be very clear to the eye if the signal to background noise is

high. The eye will complete the missing details and random isolated

a bright pixles can easily be removed from the image. We showed that we

can simplify the system by the use of non-matched filtering instead of

matched filtering and exemplified the effectiveLass of the algorithm

* by simulation. We also showed that surprisingly the range resolution is

not significantly deteriorated by the processing. However a range bias

is introduced for signals separated by less than the original range cell.

* The current experimental system should be useful for correctly presenting

targets embedded in homogenous type clutter as it would automatically

m an inBmini ii ilD N ii..
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correct for attenuation and shadowing. With some modifications this

system can be used for detection of targets with arbitrary spectrum

embedded in clutter.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

INRODUCTION

Ui As pointed out in the introduction the motivation for this research

stemmed from the failure of current techniques to provide sufficient

clutter and speckle reduction. In this research work we improve these

* techniques with post-reception algorithms using the split spectrum prin-

ciple.

At the outset (chapter 2) an analysis of the backscattered echo from

A" random media is performed. We first calculated the average of the received

echo from a regular lattice with random size scatterers and found out that

the received echo is proportional to the scatterers size, scatterer

variance, scattering density and the function G(rt) (which is the impulse

response of the system). Later we analyzed the backscattered echo from

medium with random scatterer location and size, but uniform average scat-

tering density with results similar to those obtained for the regular

lattice case. Then we studied the properties of the reflected signal

from a medium with random scatterer location, random size and non-uniform

scattering density. We showed that the received echo is strongly depen-

dent on the gradient in scattering density and calculated the echo average

for a step function in the scattering density. We confirmed the theoret-

ical results qualitatively by expeLiment using sponges to simulate an

inhomogenious medium.

EL
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The results obtained in chapter 2 set the physical basis to the

* scattering models introduced in chapter 3 and 4.

In chapter 3 we analyze the Minimization Algorithm, a technique

that was first introduced in 1979 by Newhouse and Bilgutay and showed a

remarkable improvement in flaw-to-grain echo suppression. We showed

theoretically that the signal-to-noise ratio of the processed data is

much better than that of the two other techniques that it is compared

*to, without a significant loss of dynamic range (but with an inferior

Receiving Operating Characteristic). We demonstrated the effectiveness

of the algorithm in the reduction of clutter. (This was of course demon-

* strated also in Bilgutay's work of 1982) and empirically examined the

resolution performance of the algorithm. It was shown that the resolution

is not too seriously adversely affected by the processing.

In chapter 4 we developed the theoretical basis for the split spec-

trum principle. We showed that by this procedure we transform the random

process problem into a random variable one. We then constructed the

optimum receiver and used a simplified version of the this receiver to

construct an experimental system. We analyzed the performance of the

recc teoretically and compared it to the performance of the original

* sign without "special processing". We also investigated the resolution

performance of the algorithm empirically for signals separated by less

than a single channel range cell as well as for signals separated by less

* than the original range-cell size. We show experimentally that the

resolution is not adversely affected by the processing.

0
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DISCUSSION

Though both of the techniques introduced in chapters 3 and 4 i.e. the

Optimal Processing and the Minimization algorithm were developed for the

reduction of clutter, there is a significant difference between them.

6While the optimum receiver scheme allows us automatic detection of targets
by introducing a prespecified threshold that determines the minimum

signal-to-noise ratio for which the receiver decides that a target exists

in the range-cell the Minimization algorithm is a technique to enhance

the contrast of the target signal to a background noise.

The split spectrum procesein introduces new ways for signal proces-

sing. We demonstrate the versatility of this algorithm later in this

chapter. The development of new techniques should be easy due to the

simplicity in presentation of the problem (a set of finite number of

random variables, set to be identically distributed). The technique is

attractive also due to the simplicity in implementation if simple fil-

tering instead of matched filtering is used. In practice there is no

need to digitize the RF data and apply FFT to filter the signal. The

filtering can best be done analogically, which in most cases involves

capacitors and inductors only (Fine tuning is needed to control phase

and amplitude response). The post filtering process can also be done in

hardware (and very cheaply in most cases).

To show the versatility and flexibility of the use of the split

spectrum principle we present two simple ways to improve the algorithms

described in chapters 3 and 4.

I A
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PHASE REVERSALS AND OVERLAPPING FREQUENCY WINDOWS

AIf one examines the Minimization algorithm carefully one would prob-

ably decide that the principle behind the algorithm is the following: If

there is no target in the range cell there is a high probability that the

random noise phasor is very likely to cross the zero line if we observe

its movement as we slowly change the center frequency of a frequency

window along the received signal band. According to our approach we do

Unot change the center frequency of the frequency windows continuously

but in steps and have n non overlapping windows. In this case instead of

obtaining zero for noise only we choose the phasor which is closest to the

* zero line instead of the zero we wished to "catch". Fortunately we can

determine if there would have been a zero crossing had we shifted the

center frequency of the windows continuously. Thus, if any of the n

random numbers corresponding to a certain range delay changes polarity

(or reverses its phase) i.e. if there are both negative and positive

numbers among the n random numbers (one is sufficient), then it is clear

that there was a zero crossing. So we may decide that if we observe a

phase reversal (polarity change) we will set the new processor output at

zero instead of the minimum used for the Minimization algorithm and

instead of the m/a for the Optimal Processing. It is clear that if the

signal to noise ratio is high enough the effect of the new scheme will

not affect the target echo significantly. However for low signal-to-noise

ratio it would probably adversely effect the ROC though improvement in

signal-to-noise ratio should still be high. (Note that for very low

signal-to-noise ratio the basic model we used collapses. The target echo

decreases and the assumption that the target echo is much stronger than

that of each of the small point reflectors that compose the clutter is
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not valid aay nore). In Figures 1 and 2 we show the same data shown

*earlier in chapter 3 and 4 but with the addition of polarity changes.

The improvement in signal-to-noise ratio is evident for both techniques.

Another concept is the use of overlapping frequency windows. The

concept was first introduced by Newhouse et al but was never analyzed

theoretically.

Here we use overlapping windows instead of the n orthonormal windows

*(that the K.L expansion calls for) to increase the probability of catch-

ing a zero crossing. The operation becomes somewhat more cumbersome but

proves to be very effective as is shown in the theses of Bilgutay (4).

* The addition of frequency windows should provide also more information

to improve the variance estimmate in Optimal Processing. In his thesis

Bilgutay investigates empirically the performance of the Minimization

Algorithm for different degrees of overlap as a function of grain and

flaw size. It is pertinent to investigate the theoretical performance

improvement for overlapping channels for both Minimization Algorithm and

the Optimal processing. The derivation is not straight forward and

probably only Chernoff Bounds can be established for the problem.

£SPECKLE REDUCTION

In the introduction to this report we mention speckle reduction as a

topic of interest (mainly for applications in Ultrasound Medical Imaging).

* Up to now we have used split spectrum processing only for the reduction

of clutter. We now show that split spectrum processing can be used for

speckle suppression (multiplicative type noise) also. Following the same

approach used in chapter 4 we obtain for the interval [Ti,Tf] the follow-

ing hypotheses set,
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Figure 5.1(A) Processed output Eor the signal of Figure 4.6(A) for the
* Minimization Algorithm without phase reversal algorithm using 10 non-

overlapping frequency windows. (B) Processed output the Minimization
Algorithm with phase reversal algorithm.
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Optimal Processing without phase reversal using 10 non-overlapping fre-

quency windows. (B) Processed output for Optimal Processing with phase
reversal algorithm.
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Hl: r(t) - nl(t) with oI

5.1

Ho: r(t) - n2 (t) 
with 02

following the same procedures and arguments, the LRT obtained by n iden-

tically distributed Gaussian random variables assuming ai and 02 are known

is (see for example (42) chapter 2 pp. 107),

• n
[1r,27 5.2
a1 02 11

In this case no decision can be made without further information since we
a

cannot estimate 02 in region I and vice versa. However if we evaluated

the variance for a certain region and want to determine if a new region

belongs to the same category i.e. has the same variance then a decision

rule can be constructed. It is found that in general the sum of the

squares constitutes the best detector. The sum of the squares might be a

good tool also for image formation of an Ultrasonic image built by A scans

if the grey levels are calibrated according to the lowest (or highest)

power region (this is of course done in any Ultrasound medical imaging

system on the market).

As was previously mentioned it is practically impossible to build

nonoverlapping filters that will cover the whole spectrum. Sometimes

due to resolution requirements we are forced to use wide bandwidth filters

and if the specified number of windows needed for speckle reduction is too

large to fit into the available transmitted spectrum we use overlapping

windows. In this case if the amount of overlap is substantial we are

faced with a set of random variables which are correlated. For .ais case

the general solution is the following (see (42))
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rIt[K-l - Kol] r y 5.3a

where KO and K1 are the covariance matrices of H0 and Hl respectively

defined as,

A

E[(r rt)!Hl] K1
5.4

E[(r rt)IHO] Ko

For example assume that we split the spectrum into two overlapping

channels (due to resolution requirements). Let us assume that p is their

correlation coefficient and that the two channels are assumed to have
a

identical power)

: - Fl(f)F2 (f)df
= 5.5

f-IFl(f)l 2df

so

K, E[r rt H0 I al 5.6
P1

likewisea 1 I
K0  E[r rtIH 1 o2  5.7

_p 1 _

and

K-1O 1 5.8

a 1 2 (1-p2) -p 1i
op 2

The optimum receiver becomes,

amm m m m ,
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(12 - 12.]I [r 1 r] 1 -p [Z 1. *7 1 (2r-2r )
i-p 1 r a a j~~ L12 p~

I 2 -- P - 2- a I  2 1-p 2 5.9

[ - 1r](1-p2) is just a constant multiplier. The receiver should be
0  al

constructed as shown in Figure 3.

If we assume that N consecutive points on the A line are taken from

the same statistics but are independent, the best detection scheme can

be shown to be a moving average of the output,

N
z - z i  5.10

* i-l

which is

N
z- ri + ri - 2p rlir 2i 5.11

I=I

The first two terms correspond to envelope detection and the next term

to a lowpass version of the correlated signal.

SUGGESTED FUTURE WORK

In this section we outline future work that could evolve from this

research.

1. Use of coherent reflection from random media for the estimation of

scatterer concentration. As was shown in chapter 2 there are two ways for

a coherent reflection to occur, i.e field gradient and average scattering

density gradient. The major problem in constructing strong enough field

gradient lies in the proper design of a suitable transducer shape that

will maximize the field gradient (or the integral of G(i,t) as defined in

chapter 2).
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a

A

Figure 5.3 A block diagram of the receiver as described in eq. (5.9)
for two overlapping frequency 1indows.

a

1 12
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The use of a scatterinS concentration gradient to estimate the scat-a
tering concentration profile should have applications. Thus studies on

the behaviour of the reflection from smooth boundaries in the human body

in relation to the reflection from within the tissue should provide

information on the tissue state if the scattering model introduced in

chapter 2 can be assumed (i.e. if the microstructure of the human tissue

can be modelled as a collection of point reflectors). For example the

echo from the myocardium boundary in relation to the signal from within

the myocardium might indicate an abnormality of the myocardium (as the

myocardium fibers are often modelled as an ensemble of point reflectors).

As was pointed out at the end of chapter 2 this technique can provide

a way to estimate surface grain size in metal if the metal can be immersed

in a liquid of similar characteristic impedance.

ANALYSIS OF PHASE REVERSALS AND OVERLAPPING CHANNELS

Phase reversals (or suppression of polarity changes) and overlapping

channels belong in some aspects to the same category of signal processing.

Both of the techniques use the fact that a cell containing clutter only

has a higher probability of a zero-crossing than a cell containing a-

target. Analysis of the signal-to-noise ratio for both the Minimization

algorithm and Optimal Processing with polarity change suppression is

needed in order to evaluate the improvement of these additions to the

performance of the algorithms. A careful examination of the loss in ROC

is also needed to establish possible 1, actical implementation as a tool

in Image Processing. In preliminary empirical tests for the evaluation

of the resolution performance of this addition to both the Minimization

algorithm and the Optimal Processing we found out that the resolution is
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improved for both techniques. In Figures 4 to 13 we compare the results

of "suppression of polarity changes" applied to both algorithms with the

results without "suppression". It is clearly seen that for all cases

the signals are much better separated with the suppression than without

it. It is necessary to establish the exact impact that the "suppression"

has on resolution, signal amplitude, dynamic range and range bias of

multiple signals,

AUTOMATIC FLAW DETECTION

The technique in chapter 4, "Optimal Processing", can also be used

for automatic flaw detection. We can usi the variance estimate to con-

struct a threshold that will determine a constant false alarm rate. It

a is also possible that flaw characterization in the presence of clutter

noise would be possible if different type of flaws would exhibit specific

characteristic spectra. In this case a receiver with specific constant

multipliers assigned to the different filters would "match" a specific

flaw type (and a recognition of flaw type would be possible using some

known techniques in pattern recognition).

a

EDGE SHARPENING

According to the analysis presented in chapter 2 sharp gradients in

scattering concentration result in a coherent reflection that resembles

a reflection from a flat surface or a large reflector. When a plane wave

is illuminating a random medium with a step in its scattering concentra-

tion we found out in chapter 2 that the variance at the range delay

corresponding to the imaginary boundary separating the 'wo regions of

different scattering concentrations is approximately half of the sum of
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Figure 5.4 Processed output for two signals separated by 1/2 a wa,-
length (see Fig. 4.7(A)) for Optimal Processing, with (B) and without (A)i" phase reversal.
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Figure 5.5 Processed output for two signals separated by 1/2 a wave-
length (see Fig. 4.7(A)) for the Minimization Algorithm, with (B) and
without (A) phase reversal.
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Figure 5.6 Processed output for two signals separated by a full wave-
length (see Fig. 4.8(A)) for Optimal Processing, with (B) and without (A)
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Figure 5.7 Processed output for two signals separated by a full wave-
length (see Fig. 4.8(A)) for the Minimization Algorithm, with (B) and
without (A) phase reversal.
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phase reversal.
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Figure 5. 11 Processed output for two signals separated by 4 wavelengths
(see Fig. 4.10(A)) for the Minimization Algorithm, with (B) and without
(A) phase reversal.
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(see Fig. 4.11(A)) for Optimal Processing, with (B) and without (A) phase
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the variances of the two regions. Thus we can treat this problem as a

target embedded in fluctuating medium where the standard deviation ratio

between the cell containing the target (the boundary) and the cells con-

taining clutter only can take the value of either 2 or 1/2 and the detec-

tion performance of the boundary can be evaluated using the type of ROC

graphs presented in chapter 4. If we use for example Optimal Processing

there will be no difference between the processed output of the signals

returned from regions I and 2 because m/a is independent of a as was

shown in chapter 4. Thus for the boundary range delay the processed

output will depend on m/a where m represents the coherent term of the
a

reflected signal. Use of the Minimization Algorithm will result in

improved contrast of of the boundary echo with respect to both regions

as the SNR of the Minimization Algorithm is much larger than that of any

of the other analyzed techniques.

OPTIMUM DYNAMIC RANGE

One of the advantages of the new processors is that they do not

require a substantial increase in dynamic range. Though Minimization is

a biased estimator of the signal amplitude, for high signal to noise
a

ratios and not too large number of windows this bias is very small and

can be considered negligible. Thus there is no need for a substantial

increase in amplitude dynamic range of the processed output. The samea

holds true for the Optimal Processing if the targets are embedded in homo-

genous type clutter and the number of windows employed is sufficiently

high to allow a good estimate of the clutter variance.

If we want to minimize the dynamic range requirements for non-

homogenous type clutter and still gain high signal to noise ratio without
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a need for a high number of frequency windows to estimate the variance

I one can use the following scheme: Use the phase reversal scheme to decide

if a target exists in the range cell, i.e. if there was a phase change or

not. In the event that there is no phase reversal among the n random

varibles one can decide to present the original signal instead of the

two algorithms suggested in chapter 3 and 4. This scheme will not require

any increase in dynamic range of the processed output but will have the

I clutter reduction properties of the phase reversal scheme.

If one wants to improve the detection properties of this scheme one

way to do it is by allowing for example one or two phase reversals without

* deciding on a zero (i.e. clutter) in the range cell. This way we will in-

crease the probability of detection with a similar increase in probability

of false alarm.

a
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APPENDIX A

It can be shown that for many different types of transmitted signal

and receiver, the peak of the echo of a point target will not change its

delay with respect to the transmit pulse, due to the process of splitting

the received echo spectrum. We now demonstrate this for the case of a

transmitted signal of Gaussian shape

• -- t2

g(t) - e 2 Cos %t (Al)

whose echo from a point target is passed through n filters with a Gaussian

transfer function.

It is clear that the peak of g(t) will occur for t-0 (or for t-T

for a delayed version of g(t) for a target located at r).

The Fourier Transform of g(t) is also Gaussian

_ b2 (rw)2  -b 2 (wrI- )2

G(w) - /2- b[e 2 + e 2 (A2)

The transfer function of the nth Gaussian frequency window can be written

as follows

b2(.n-si )2 b2 (csi4- )2
_n n ) 2 n n -7n

Hn(w) -/
2 w bn[e + e ] (A3)

* Multiplying eqts. (A2) and (A3), assuming that the cross products are

negligible (because the transfer function at zero frequency should be

closely zero), we obtain the output spectrum of the nth frequency window
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*2 *2
( - Wh) - b2( ft) 2

Gn()- G().%n(w) A [e + ] (A4)

where

h 2 
-b

2 + b2 (A5)

Sw.b
2 + wnb2

a~a "(A6)wn b2 + b2 (6

and A is a proportionality constant which is independent of w.

As the output of the gaussian filters is Gaussian their inverse Fourier

transforms will also be Gaussian with

_ 2

g(t) - e 2b*cosw t
lid n cos w* (A7)

and all the peaks will still be at t-0.

a
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a

APPENDIX B

The Likelihood Ratio Test of the General Gaussian Problem

In this appendix we derive the Likelihood Ratio Test for the dif-a
ferent cases analyzed in chapter 4 and 5. We follow here the derivation

given in (19).

* Let the set tiy ..... n be jointly Gaussian. If we define

4 t -E[f'] - d (Bl)

and

cov[ft - E[(t-ja)(jT-T)] , K (B2)

Then one can show that

n
Pr('*) - [(21r)7"Kq1/2,-l exp[-! ( *T -AT I K- I ( f - t1) j](3

- (i)1K'2 ' 2 (B3)

* Under the first hypothesis H, we assume that f is specified by a mean

vector and a covariance matrix. We denote

E[fIH1 ] = "I (B4)

K1 " E[(f-&)(tTdTi)IHt1 (3)

(B5
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Likewise

E(fIH0I - a.(36)

The likelihood ratio test becomes

L(r) 2 r~~i
Pr(flHo) 2 00 (B8)

Taking the logarithm we get

a (itT4T)K-(-4) -i~TdTKlrm)

2T 2 (B9)

Ln n + iLnK 1 1 -ILnIK0 I y

2 2

Now the results used in chapter 4 and 5 can be obtained

1. Eq. 4.22

Corresponds to equal covariance matrices with Kl-K 0 -K and %=0O. In this

case the LRT becomes

L(t) - ~T - -L(f*T4T)Kl(r,-,)

2 2 1

which becomes

H1o
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which is eq. 4.22

2. Eq. 4.25

Corresponds to independent components with equal variances. K1 becomes

diagonal and K0-kl, m0-O. In this case the LRT becomes

L(L*) - L*k'-i -1 fT-AT)K(
2 1 2 1 1(B12)

but

1 0 1 0 1h

KK 0 -k a2  it ~ 1 m . (B13)

-0 1- 0 1-

so

2 1 2 1

11 0

M
02 becomes a constant multiplier. Estimating m 1 i ri we get

n

n IL
L(r) I 1 r2(!-K) + ri)2  (B15)

A which is eq, 4.25

3. Eq. 5.3

a Corresponds to mj-m0 -0. The LRT becomes

L~)- !fX-?- 1TK7-I - LTK0-Kj)+

2 0 2 2 (B16)

(A
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and eq. 5.3 follows

4. Eq. 5.2

Readily can be obtained by using

K1 - a2  o 20  (B17)

I1 0 1 0

in eq. 5.3.

IM
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APPENDIX C

The Use of the Coherent Term for Attenuation Estimation

From chapter 3 the ratio between the coherent and incoherent terms

for uniform concentration of scatterers in random media can be shown to

be

02NI fG(r,t)dvI2

F v (Cl)
pflG(r,t)12dv

v

The average power reflected from range delay t taking into account attenu-

ation is

P(t) - e-at[N~pZfG(f,t)j
2 dv + N2 21fG(t,t)dvI2 ] (C2)

v v

The concentration N is calculated through eq. CI and the evaluation of p

and p7 is also possible. Measuring P(t) for 2 range delays t1 and t2

a allows the estimation of the attenuation coefficient a.

P(t2) -cAt NZfIG(rtl ) 12dv + N2 02IfG(rtidvI 2I
2)_ -e v v

P(t 2 ) NpfIG(r,t2) 
2dv + N2 21fG(rt 2dvI

21•~2 v t)v

e-nAt • K t2-tI - At (C3)

and the attenuation coefficient a becomes

LnK [P (t2 )/IP (tly) K
a =(C4)

At

• a mmmmm mn m mm m mm
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For high scattering concentration and sharp field gradients only the

second term in the denominator and numerator are left and eq. C4 becomes

jfG(r,tl)dv 12 P(t2)

_IfG(r,t 2 )dv 11 P(tl) (0
C(C5M

At


